Article

Relationships between physical dose quantities and patient dose in CT.

Department of Radiology, Humboldt University, Berlin, Germany.
British Journal of Radiology (Impact Factor: 1.22). 06/1999; 72(858):556-61. DOI: 10.1259/bjr.72.858.10560337
Source: PubMed

ABSTRACT Patient dose in CT is usually expressed in terms of organ dose and effective dose. The latter is used as a measure of the stochastic risk. Determination of these doses by measurements or calculations can be time-consuming. We investigated the efficacy of physical dose quantities to describe the organ dose and effective dose. For various CT examinations of the head, neck and trunk, organ doses and effective doses were determined using conversion factors. Dose free-in-air on the axis of rotation (Dair) and weighted computed tomography dose index (CTDIw) were compared with the absorbed doses of organs which are located totally within the body region examined. Dose-length product (DLP) was compared with the effective dose. The ratio of the organ dose to CTDIw was 1.37 (0.87-1.79) mSv mGy-1. DLP showed a significant correlation with the effective dose (p < 0.005). The average ratio of effective dose to DLP was 0.28 x 10(-2) mSv (mGy cm)-1 for CT of the head, 0.62 x 10(-2) mSv (mGy cm)-1 for CT of the neck and 1.90 x 10(-2) mSv (mGy cm)-1 for CT of the trunk. CTDIw and DLP can be used for estimating the organ dose and effective dose associated with CT examinations of the head, neck and trunk.

2 Bookmarks
 · 
203 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this work was to create a model of a wide-bore Siemens Somatom Sensation Open CT scanner for use with GMCTdospp, which is an EGSnrc-based software tool dedicated for Monte Carlo calculations of dose in CT examinations. The method was based on matching spectrum and filtration to half value layer and dose profile, and thus was similar to the method of Turner et al. (Med. Phys. 36, pp. 2154-2164). Input data on unfiltered beam spectra were taken from two sources: the TASMIP model and IPEM Report 78. Two sources of HVL data were also used, namely measurements and documentation. Dose profile along the fan-beam was measured with Gafchromic RTQA-1010 (QA+) film. Two-component model of filtration was assumed: bow-tie filter made of aluminum with 0.5 mm thickness on central axis, and flat filter made of one of four materials: aluminum, graphite, lead, or titanium. Good agreement between calculations and measurements was obtained for models based on the measured values of HVL. Doses calculated with GMCTdospp differed from the doses measured with pencil ion chamber placed in PMMA phantom by less than 5%, and root mean square difference for four tube potentials and three positions in the phantom did not exceed 2.5%. The differences for models based on HVL values from documentation exceeded 10%. Models based on TASMIP spectra and IPEM78 spectra performed equally well.
    Physica Medica 07/2014; 30(7):725-864. · 1.17 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study measured patient exposure dose for purpose exposure area and peripheral critical organs by using optically stimulated luminescence dosimeters (OSLDs) from computed tomography (CT), based on the measurement results, we predicted the radiobiological effects, and would like to advised ways of reduction strategies. In order to experiment, OSLDs received calibration factor were attached at left and right lens, thyroid, field center, and sexual gland in human body standard phantom that is recommended in ICRP, and we simulated exposure dose of patients in same condition that equal exposure condition according to examination area. Average calibration factor of OSLDs were . In case of left and right lens, equivalent dose was measure in 50.49 mGy in skull examination, 0.24 mGy in chest, under standard value in abdomen, lumbar spine and pelvis. In case of thyroid, equivalent dose was measured in 10.89 mGy in skull examination, 7.75 mGy in chest, 0.06 mGy in abdomen, under standard value in lumber spine and pelvis. In case of sexual gland, equivalent dose was measured in 21.98 mGy, 2.37 mGy in lumber spine, 6.29 mGy in abdomen, under standard value in skull examination. Reduction strategies about diagnosis reference level (DRL) in CT examination needed fair interpretation and institutional support recommending international organization. So, we met validity for minimize exposure of patients, systematize influence about exposure dose of patients and minimize unnecessary exposure of tissue.
    Journal of the Korean Society of Radiology. 01/2013; 7(2).

Full-text

Download
2 Downloads
Available from