Article

Developmental gene regulation in Giardia lamblia: first evidence for an encystation-specific promoter and differential 5 ' mRNA processing

Division of Infectious Diseases, Department of Pathology, University of California at San Diego, 214 Dickinson St., San Diego, CA 92103-8416, USA.
Molecular Microbiology (Impact Factor: 5.03). 10/1999; 34(2):327-40. DOI: 10.1046/j.1365-2958.1999.01602.x
Source: PubMed

ABSTRACT Giardia lamblia must encyst to survive in the environment and subsequently infect new hosts. We investigated the expression of glucosamine-6-phosphate isomerase (Gln6PI), the first enzyme required for biosynthesis of N-acetylgalactosamine, for the major cyst wall polysaccharide. We isolated two Gln6PI genes that encode proteins with large areas of identity, but distinctive central and terminal regions. Both recombinant enzymes have comparable kinetics. Interestingly, these genes have distinct patterns of expression. Gln6PI-A has a conventional, short 5' untranslated region (UTR), and is expressed at a low level during vegetative growth and encystation. The Gln6PI-B gene has two transcripts - one is expressed constitutively and the second species is highly upregulated during encystation. The non-regulated Gln6PI-B transcript has the longest 5'-UTR known for Giardia and is 5' capped or blocked. In contrast, the Gln6PI-B upregulated transcript has a short, non-capped 5'-UTR. A small promoter region (< 56 bp upstream from the start codon) is sufficient for the regulated expression of Gln6PI-B. Gln6PI-B also has an antisense overlapping transcript that is expressed constitutively. A shorter antisense transcript is detected during encystation. This is the first report of a developmentally regulated promoter in Giardia, as well as evidence for a potential role of 5' RNA processing and antisense RNA in differential gene regulation.

Download full-text

Full-text

Available from: Jeffrey D Silberman, Oct 13, 2014
0 Followers
 · 
60 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the encystment process of the ciliate protist Colpoda cucullus, we observed that the cell total protein abundance was reduced at 12 h - 1 d after the onset of encystment induction subsequent to the reduction of mRNA abundance. We analyzed the alteration of the expression levels of water-insoluble proteins by two-dimensional polyacrylamide gel electrophoresis using polyoxyethylene (20) sorbitan monooleate (Tween-80), and we identified proteins whose expression levels were altered in the encystment process by a liquid chromatography tandem mass spectrometry analysis. The expression level of a 60-kDa protein (p60; heat shock protein 60) was temporarily enhanced and that of a 55-kDa protein (p55; actin) and a 49-kDa protein (p49; actin) was enhanced in the Colpoda encystment process. In mature cysts, the expression level of p55 and p49 tended to be reduced, whereas the expression level of a 50-kDa protein (p50d; α-tubulin), a 25-kDa protein (p25; α-tubulin) and a 52-kDa protein (p52c; β-tubulin) were enhanced. This article is protected by copyright. All rights reserved.
    Journal of Eukaryotic Microbiology 10/2013; 61(1). DOI:10.1111/jeu.12086 · 2.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Histone modification is an important mechanism regulating both gene expression and the establishment and maintenance of cellular phenotypes during development. Regulation of histone acetylation via histone acetylases and deacetylases (HDACs) appears to be particularly crucial in determining gene expression patterns. In this study we explored the effect of HDAC inhibition on the life cycle of the human pathogen Giardia lamblia, a highly reduced parasitic protozoan characterized by minimized cellular processes. We found that the HDAC inhibitor FR235222 increased the level of histone acetylation and induced transcriptional regulation of approximately 2% of genes in proliferating and encysting parasites. In addition, our analyses showed that the levels of histone acetylation decreased during differentiation into cysts, the infective stage of the parasite. Importantly, FR235222 treatment during encystation reversed this histone hypo-acetylation and potently blocked the formation of cysts. These results provide the first direct evidence for epigenetic regulation of gene expression in this simple eukaryote. This suggests that regulation of histone acetylation is involved in the control of Giardia stage differentiation, and identifies epigenetic mechanisms as a promising target to prevent Giardia transmission.
    Molecular Microbiology 04/2010; 76(1):48-67. DOI:10.1111/j.1365-2958.2010.07062.x · 5.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A shuttle vector for Escherichia coli and Giardia lamblia was modified to produce a reporter plasmid, which monitors the expression of prescribed gene in G. lamblia by measuring its luciferase activity. Promoter regions of the gap2 gene, one of the genes induced during encystation, were cloned into this plasmid, and the resultant constructs were then transfected into trophozoites of G. lamblia. Transgenic trophozoites containing one of the 3 gap2-luc reporters were induced to encystation, and characterized with respect to gap2 gene expression by measuring their luciferase activities. Giardia containing a gap2-luc fusion of 112-bp upstream region showed full induction of luciferase activity during encystation.
    The Korean Journal of Parasitology 04/2006; 44(1):21-6. DOI:10.3347/kjp.2006.44.1.21 · 0.97 Impact Factor