Article

Dopamine release from nigral transplants visualized in vivo in a Parkinson's patient.

MRC Cyclotron Unit, Imperial College School of Medicine, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK.
Nature Neuroscience (Impact Factor: 14.98). 01/2000; 2(12):1137-40. DOI: 10.1038/16060
Source: PubMed

ABSTRACT Synaptic dopamine release from embryonic nigral transplants has been monitored in the striatum of a patient with Parkinson's disease using [11C]-raclopride positron emission tomography to measure dopamine D2 receptor occupancy by the endogenous transmitter. In this patient, who had received a transplant in the right putamen 10 years earlier, grafts had restored both basal and drug-induced dopamine release to normal levels. This was associated with sustained, marked clinical benefit and normalized levels of dopamine storage in the grafted putamen. Despite an ongoing disease process, grafted neurons can thus continue for a decade to store and release dopamine and give rise to substantial symptomatic relief.

Download full-text

Full-text

Available from: Roger N Gunn, Jul 04, 2015
1 Follower
 · 
133 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transplantation of glial-rich neural progenitors has been demonstrated to attenuate motor neuron degeneration and disease progression in rodent models of mutant superoxide dismutase 1 (SOD1)-mediated amyotrophic lateral sclerosis (ALS). However, translation of these results into a clinical setting requires a renewable human cell source. Here, we derived glial-rich neural progenitors from human iPSCs and transplanted them into the lumbar spinal cord of ALS mouse models. The transplanted cells differentiated into astrocytes, and the treated mouse group showed prolonged lifespan. Our data suggest a potential therapeutic mechanism via activation of AKT signal. The results demonstrated the efficacy of cell therapy for ALS by the use of human iPSCs as cell source.
    Stem Cell Reports 08/2014; 3(2). DOI:10.1016/j.stemcr.2014.05.017
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Difficulties in realizing persistent neurogenesis, inabilities in modeling pathogenesis of most cases, and a shortage of disease material for screening therapeutic agents restrict our progress to overcome challenges presented by neurodegenerative diseases. We propose that reprogramming primary somatic cells of patients into induced pluripotent stem cells (iPSCs) provides a new avenue to overcome these impediments. Their abilities in self-renewal and differentiation into various cell types will enable disease investigation and drug development. In this review, we introduce efficient approaches to generate iPSCs and distinct iPSCs differentiation stages, and critically discuss paradigms of iPSCs technology application to investigate neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Although iPSCs technology is in its infancy and faces many obstacles, it has great potential in helping to identify therapeutic targets for treating neurodegenerative diseases.
    Neuroscience 10/2012; 228. DOI:10.1016/j.neuroscience.2012.09.076 · 3.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human fetal midbrain tissue grafting has provided proof-of-concept for dopamine cell replacement therapy (CRT) in Parkinson's disease (PD). However, limited tissue availability has hindered the development and widespread use of this experimental therapy. Here we present a method for generating large numbers of midbrain dopaminergic (DA) neurons based on expanding and differentiating neural stem/progenitor cells present in the human ventral midbrain (hVM) tissue. Our results show that hVM neurospheres (hVMN) with low cell numbers, unlike their rodent counterparts, expand the total number of cells 3-fold, whilst retaining their capacity to differentiate into midbrain DA neurons. Moreover, Wnt5a promoted DA differentiation of expanded cells resulting in improved morphological maturation, midbrain DA marker expression, DA release and electrophysiological properties. This method results in cell preparations that, after expansion and differentiation, can contain 6-fold more midbrain DA neurons than the starting VM preparation. Thus, our results provide evidence that by improving expansion and differentiation of progenitors present in the hVM it is possible to greatly enrich cell preparations for DA neurons. This method could substantially reduce the amount of human fetal midbrain tissue necessary for CRT in patients with PD, which could have major implications for the widespread adoption of this approach.
    Neurobiology of Disease 08/2012; 49C:118-127. DOI:10.1016/j.nbd.2012.08.006 · 5.20 Impact Factor