Comparing cycling world hour records, 1967-1996: modeling with empirical data.

Exercise Science Unit, University of Tennessee, Knoxville, USA.
Medicine &amp Science in Sports &amp Exercise (Impact Factor: 4.48). 12/1999; 31(11):1665-76. DOI: 10.1097/00005768-199911000-00025
Source: PubMed

ABSTRACT The world hour record in cycling has increased dramatically in recent years. The present study was designed to compare the performances of former/current record holders, after adjusting for differences in aerodynamic equipment and altitude. Additionally, we sought to determine the ideal elevation for future hour record attempts.
The first step was constructing a mathematical model to predict power requirements of track cycling. The model was based on empirical data from wind-tunnel tests, the relationship of body size to frontal surface area, and field power measurements using a crank dynamometer (SRM). The model agreed reasonably well with actual measurements of power output on elite cyclists. Subsequently, the effects of altitude on maximal aerobic power were estimated from published research studies of elite athletes. This information was combined with the power requirement equation to predict what each cyclist's power output would have been at sea level. This allowed us to estimate the distance that each rider could have covered using state-of-the-art equipment at sea level. According to these calculations, when racing under equivalent conditions, Rominger would be first, Boardman second, Merckx third, and Indurain fourth. In addition, about 60% of the increase in hour record distances since Bracke's record (1967) have come from advances in technology and 40% from physiological improvements.
To break the current world hour record, field measurements and the model indicate that a cyclist would have to deliver over 440 W for 1 h at sea level, or correspondingly less at altitude. The optimal elevation for future hour record attempts is predicted to be about 2500 m for acclimatized riders and 2000 m for unacclimatized riders.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The current International Human Powered Vehicle Association world records for faired bicycles stand at 133.284 km/h for the 200m flying start speed record and 91.562 km for the hour record. Traditionally the recumbent bicycles that have been developed for breaking one of either of these records have been optimized around a specific, relatively small rider, enabling the overall size to be kept small. Creating the smallest frontal area possible and optimal aerodynamic shape were then the design goals. This paper discusses the development of the Velox recumbent bicycle, which has been designed using another approach. The power required to break either of the records depends mostly on air resistance. Therefore small riders have the advantage of allowing for smaller frontal areas, whilst larger riders are able to provide more power. Performance optimization, lead to a design based around an average 1.95m tall male rider for Velox. The aerodynamic shape of Velox was then developed around the above criterion and designed with CFD and validated with wind tunnel and road tests. Essential for the rider's performance is that the rider feels comfortable whilst riding the bicycle. Therefore the uncontrolled lateral dynamics and the required rider steer control input were investigated. The bicycle's geometry was optimized for low speed stability and the required control input.
    Procedia Engineering. 34:313–318.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chronic exposure to a stressor elicits adaptations enhancing the tolerance to that stressor. These adaptive responses might also improve tolerance under less stressful conditions. For example, historically there has been much interest in the adaptive responses to high-altitude, or hypoxia, and their ergogenic potential under sealevel, or normoxic, conditions. In contrast, the influence of the adaptive responses to heat on exercise under cooler conditions has received relatively little interest. Heat acclimation/acclimatization (HA) is known to increase work capacity in hot environments. Yet, aerobic exercise performance can progressively deteriorate as ambient temperature increases beyond*10 �C, indicating a thermal limitation even under relatively cool conditions. The improved thermoregulatory capability induced by HA might attenuate this thermal decrement in a manner similar to that seen when exposed to hotter temperatures. Moreover, the suite of adaptations elicited by HA has the potential to increase maximal oxygen uptake, lactate threshold and economy, and thus may be ergogenic even under conditions where performance is not thermally limited. Indeed, evidence is now emerging to support an ergogenic effect of HA but the number of studies is limited and in some instances lack appropriate control, are confounded by methodological limitations, or do not address the mechanisms of action. Nevertheless, these tantalising insights into the ergogenic potential of heat will likely generate considerable interest in this new ‘hot topic’. Future research will need to employ well-designed studies to clarify the exercise conditions under which ergogenic effects of HA are apparent, to elucidate the precise mechanisms, and to optimise HA strategies for performance.
    Sports Medicine 06/2014; · 5.32 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: PURPOSE: To determine the effects of heat-acclimatization on performance and pacing during outdoor cycling time-trials (TT, 43.4km) in the heat. METHODS: Nine cyclists performed 3 TTs in hot ambient conditions (TTH, ∼37ºC) on the first (TTH-1), sixth (TTH-2) and fourteenth (TTH-3) days of training in the heat. Data were compared to the average of two TTs in cool condition (∼8ºC) performed pre and post heat acclimatization (TTC). RESULTS: TTH-1 (77±6min) was slower (p=0.001) than TTH-2 (69±5min) and both were slower (p<0.01) than TTC and TTH-3 (66±3 and 66±4 min, respectively) without differences between TTC and TTH-3 (p>0.05). The cyclists initiated the first 20% of all TTs at a similar power output, irrespective of climate and acclimatization status; however, during TTH-1 they subsequently had a marked decrease in power output, which was partly attenuated following six days of acclimatization and further reduced after fourteen days. HR was higher during the first 20% of TTH-1 than in the other TTs (p<0.05), but there were no differences between conditions from 30% onward. Final rectal temperature was similar in all TTHs (40.2±0.4ºC, p=1.000) and higher than in TTC (38.5±0.6ºC, p<0.001). CONCLUSION: Following two weeks of acclimatization, trained cyclists are capable of completing a prolonged TT in a similar time in the heat compared to cool conditions, whereas in the unacclimatized state they experienced a marked decrease in power output during the TTHs.
    Medicine and science in sports and exercise. 06/2014;


Available from
Jun 4, 2014