Cre-mediated gene inactivation demonstrates that FGF8 is required for cell survival and patterning of the first branchial arch

G.W. Hooper Foundation, Department of Microbiology, School of Medicine, University of California at San Francisco (UCSF), San Francisco, California 94143-0552, USA.
Genes & Development (Impact Factor: 12.64). 01/2000; 13(23):3136-48. DOI: 10.1101/gad.13.23.3136
Source: PubMed

ABSTRACT In mammals, the first branchial arch (BA1) develops into a number of craniofacial skeletal elements including the jaws and teeth. Outgrowth and patterning of BA1 during early embryogenesis is thought to be controlled by signals from its covering ectoderm. Here we used Cre/loxP technology to inactivate the mouse Fgf8 gene in this ectoderm and have obtained genetic evidence that FGF8 has a dual function in BA1: it promotes mesenchymal cell survival and induces a developmental program required for BA1 morphogenesis. Newborn mutants lack most BA1-derived structures except those that develop from the distal-most region of BA1, including lower incisors. The data suggest that the BA1 primordium is specified into a large proximal region that is controlled by FGF8, and a small distal region that depends on other signaling molecules for its outgrowth and patterning. Because the mutant mice resemble humans with first arch syndromes that include agnathia, our results raise the possibility that some of these syndromes are caused by mutations that affect FGF8 signaling in BA1 ectoderm.

Download full-text


Available from: Michael J Depew, Feb 05, 2014
  • Source
    • "Notably, radial glia and their progeny (ependymal and neural progenitor cells) strongly express FGFR1 (Zheng et al. 2004; García-González et al. 2010; Gálvez- Contreras et al. 2012) and FGFR1 signalling regulates cilia length and function in diverse epithelia during development (Neugebauer et al. 2009). Moreover, FGFR1 is expressed in the motile cilia and FGF signalling is associated with tumour progression and several ciliopathies (Trumpp et al. 1999; Evans et al. 2002; Macatee et al. 2003; Creuzet et al. 2004; Szabo-Rogers et al. 2008; Zaghloul and Brugmann 2011). Hence, FGFR1 expression in ependymal cells may actually be important for ependymal ciliary beating in the lateral ventricles. "
    [Show abstract] [Hide abstract]
    ABSTRACT: New subventricular zone (SVZ)-derived neuroblasts that migrate via the rostral migratory stream are continuously added to the olfactory bulb (OB) of the adult rodent brain. Anosmin-1 (A1) is an extracellular matrix protein that binds to FGF receptor 1 (FGFR1) to exert its biological effects. When mutated as in Kallmann syndrome patients, A1 is associated with severe OB morphogenesis defects leading to anosmia and hypogonadotropic hypogonadism. Here, we show that A1 over-expression in adult mice strongly increases proliferation in the SVZ, mainly with symmetrical divisions, and produces substantial morphological changes in the normal SVZ architecture, where we also report the presence of FGFR1 in almost all SVZ cells. Interestingly, for the first time we show FGFR1 expression in the basal body of primary cilia in neural progenitor cells. Additionally, we have found that A1 over-expression also enhances neuroblast motility, mainly through FGFR1 activity. Together, these changes lead to a selective increase in several GABAergic interneuron populations in different OB layers. These specific alterations in the OB would be sufficient to disrupt the normal processing of sensory information and consequently alter olfactory memory. In summary, this work shows that FGFR1-mediated A1 activity plays a crucial role in the continuous remodelling of the adult OB.
    Brain Structure and Function 10/2014; DOI:10.1007/s00429-014-0904-8 · 4.57 Impact Factor
  • Source
    • "Fgf8 hypomorphic murine mutants (Fgf8 D/neo in Fig. 4d) exhibit asymmetric development of the nasal capsules as well as DA in the development of the neurocranial base and optic capsules (Fig. 4d; Griffin et al., 2013). Tissue-specific deletion of Fgf8 in the mouse oral ectoderm , moreover, results in a significant loss of jaw elements (Trumpp et al., 1999). Notably, asymmetry of the jaw is often seen in these mutants, and the left side appears to be more severely affected. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Much of the gnathostome (jawed vertebrate) evolutionary radiation was dependent upon the ability to sense and interpret the environment and subsequently act upon this information through utilization of a specialized mode of feeding involving the jaws. While the gnathostome skull, reflective of the vertebrate baüplan, typically is bilaterally symmetric with right (dextral) and left (sinistral) halves essentially representing mirror images along the midline, both adaptive and abnormal asymmetries have appeared. Herein we provide a basic primer on studies of the asymmetric development of the gnathostome skull, touching briefly on asymmetry as a field of study, then describing the nature of cranial development and finally underscoring evolutionary and functional aspects of left-right asymmetric cephalic development. © 2014 Wiley Periodicals, Inc.
    genesis 06/2014; 52(6). DOI:10.1002/dvg.22786 · 2.04 Impact Factor
  • Source
    • "While the NC is required to establish this telencephalon signaling center, the resulting FGF is in turn required for proper development of the NC (Creuzet et al., 2004). FGF8 is chemotactic for NC (Sato et al., 2011), and promotes its survival and proliferation (Trumpp et al., 1999). The olfactory pit (OP) is another important signaling center during craniofacial development, and provides an additional source of FGF8 (Szabo-Rogers et al., 2009). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Much of the bone, cartilage and smooth muscle of the vertebrate face is derived from neural crest (NC) cells. During craniofacial development, the anterior neural ridge (ANR) and olfactory pit (OP) signaling centers are responsible for driving the outgrowth, survival, and differentiation of NC populated facial prominences, primarily via FGF. While much is known about the functional importance of signaling centers, relatively little is understood of how these signaling centers are made and maintained. In this report we describe a dramatic craniofacial malformation in mice mutant for the zinc finger transcription factor gene Sp8. At E14.5 they show facial prominences that are reduced in size and underdeveloped, giving an almost faceless phenotype. At later times they show severe midline defects, excencephaly, hyperterlorism, cleft palate, and a striking loss of many NC and paraxial mesoderm derived cranial bones. Sp8 expression was primarily restricted to the ANR and OP regions during craniofacial development. Analysis of an extensive series of conditional Sp8 mutants confirmed the critical role of Sp8 in signaling centers, and not directly in the NC and paraxial mesoderm cells. The NC cells of the Sp8 mutants showed increased levels of apoptosis and decreased cell proliferation, thereby explaining the reduced sizes of the facial prominences. Perturbed gene expression in the Sp8 mutants was examined by laser capture microdissection coupled with microarrays, as well as in situ hybridization and immunostaining. The most dramatic differences included striking reductions in Fgf8 and Fgf17 expression in the ANR and OP signaling centers. We were also able to achieve genetic and pharmaceutical partial rescue of the Sp8 mutant phenotype by reducing Sonic Hedgehog (SHH) signaling. These results show that Sp8 primarily functions to promote Fgf expression in the ANR and OP signaling centers that drive the survival, proliferation, and differentiation of the NC and paraxial mesoderm that make the face.
    Developmental Biology 07/2013; 381(2). DOI:10.1016/j.ydbio.2013.07.007 · 3.64 Impact Factor
Show more