Cre-mediated gene inactivation demonstrates that FGF8 is required for cell survival and patterning of the first branchial arch.

G.W. Hooper Foundation, Department of Microbiology, School of Medicine, University of California at San Francisco (UCSF), San Francisco, California 94143-0552, USA.
Genes & Development (Impact Factor: 12.64). 01/2000; 13(23):3136-48. DOI: 10.1101/gad.13.23.3136
Source: PubMed

ABSTRACT In mammals, the first branchial arch (BA1) develops into a number of craniofacial skeletal elements including the jaws and teeth. Outgrowth and patterning of BA1 during early embryogenesis is thought to be controlled by signals from its covering ectoderm. Here we used Cre/loxP technology to inactivate the mouse Fgf8 gene in this ectoderm and have obtained genetic evidence that FGF8 has a dual function in BA1: it promotes mesenchymal cell survival and induces a developmental program required for BA1 morphogenesis. Newborn mutants lack most BA1-derived structures except those that develop from the distal-most region of BA1, including lower incisors. The data suggest that the BA1 primordium is specified into a large proximal region that is controlled by FGF8, and a small distal region that depends on other signaling molecules for its outgrowth and patterning. Because the mutant mice resemble humans with first arch syndromes that include agnathia, our results raise the possibility that some of these syndromes are caused by mutations that affect FGF8 signaling in BA1 ectoderm.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The production of ribosomes is ubiquitous and fundamental to life. As such, it is surprising that defects in ribosome biogenesis underlie a growing number of symptomatically distinct inherited disorders, collectively called ribosomopathies. We previously determined that the nucleolar protein, NOL11, is essential for optimal pre-rRNA transcription and processing in human tissue culture cells. However, the role of NOL11 in the development of a multicellular organism remains unknown. Here, we reveal a critical function for NOL11 in vertebrate ribosome biogenesis and craniofacial development. Nol11 is strongly expressed in the developing cranial neural crest (CNC) of both amphibians and mammals, and knockdown of Xenopus nol11 results in impaired pre-rRNA transcription and processing, increased apoptosis, and abnormal development of the craniofacial cartilages. Inhibition of p53 rescues this skeletal phenotype, but not the underlying ribosome biogenesis defect, demonstrating an evolutionarily conserved control mechanism through which ribosome-impaired craniofacial cells are removed. Excessive activation of this mechanism impairs craniofacial development. Together, our findings reveal a novel requirement for Nol11 in craniofacial development, present the first frog model of a ribosomopathy, and provide further insight into the clinically important relationship between specific ribosome biogenesis proteins and craniofacial cell survival.
    PLoS Genetics 03/2015; 11(3):e1005018. DOI:10.1371/journal.pgen.1005018 · 8.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mammalian heterodont dentition is differentiated into incisors, canines, premolars, and molars in the mesial-distal direction, in both the upper and lower jaws. Although all the lower teeth are rooted in the mandible, the upper incisors are rooted in the premaxilla and the upper canine and the teeth behind it are in the maxilla. The present study uncovers ontogenetic backgrounds to these shared and differing mesiodistal patterns of the upper and lower dentition. To this end, we examined the dentition development of the house shrew, Suncus murinus, instead of the rodent model animals because the dentition of this primitive eutherian species includes all the tooth classes, and no toothless diastema region. In the shrew, the upper incisor-forming region extended over the medial nasal prominence and the mesial part of the maxillary prominence. Consequently, the maxillary and mandibular prominences were in a mirror-image relationship in terms of the mesiodistally differentiated tooth-forming regions and of the complementary gene expression pattern, with Bmp4 in the mesial and Fgf8 in the distal regions. This suggests shared molecular mechanisms regulating tooth class differentiation between the upper and lower jaws. However, the premaxillary bone appeared within the mesenchyme of the medial nasal prominence, but grew distally beyond the former epithelial boundary with the maxillary prominence to form, finally, the incisive (premaxillary-maxillary) suture just mesial to the canine. Therefore, the developmental locations of the upper incisors are not inconsistent with the classical osteological criterion of the upper canine by comparative odontologists. © 2015 Wiley Periodicals, Inc.
    Evolution & Development 03/2015; 17(2). DOI:10.1111/ede.12116 · 2.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A well-known tenet of murine tooth development is that BMP4 and FGF8 antagonistically initiate odontogenesis, but whether this tenet is conserved across amniotes is largely unexplored. Moreover, changes in BMP4-signaling have previously been implicated in evolutionary tooth loss in Aves. Here we demonstrate that Bmp4, Msx1, and Msx2 expression is limited proximally in the red-eared slider turtle (Trachemys scripta) mandible at stages equivalent to those at which odontogenesis is initiated in mice, a similar finding to previously reported results in chicks. To address whether the limited domains in the turtle and the chicken indicate an evolutionary molecular parallelism, or whether the domains simply constitute an ancestral phenotype, we assessed gene expression in a toothed reptile (the American alligator, Alligator mississippiensis) and a toothed non-placental mammal (the gray short-tailed opossum, Monodelphis domestica). We demonstrate that the Bmp4 domain is limited proximally in M. domestica and that the Fgf8 domain is limited distally in A. mississippiensis just preceding odontogenesis. Additionally, we show that Msx1 and Msx2 expression patterns in these species differ from those found in mice. Our data suggest that a limited Bmp4 domain does not necessarily correlate with edentulism, and reveal that the initiation of odontogenesis in non-murine amniotes is more complex than previously imagined. Our data also suggest a partially conserved odontogenic program in T. scripta, as indicated by conserved Pitx2, Pax9, and Barx1 expression patterns and by the presence of a Shh-expressing palatal epithelium, which we hypothesize may represent potential dental rudiments based on the Testudinata fossil record. J. Exp. Zool. (Mol. Dev. Evol.) 00B: 1-15, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
    Journal of Experimental Zoology Part B Molecular and Developmental Evolution 02/2015; 324(3). DOI:10.1002/jez.b.22594 · 1.88 Impact Factor