Clinical and genetic heterogeneity in autosomal recessive nemaline myopathy

University of Toronto, Toronto, Ontario, Canada
Neuromuscular Disorders (Impact Factor: 2.64). 01/2000; 9(8):564-72. DOI: 10.1016/S0960-8966(99)00061-9
Source: PubMed


Autosomal recessive nemaline (rod) myopathy is clinically and genetically heterogeneous. A clinically distinct, typical form, with onset in infancy and a non-progressive or slowly progressive course, has been assigned to a region on chromosome 2q22 harbouring the nebulin gene Mutations have now been found in this gene, confirming its causative role. The gene for slow tropomyosin TPM3 on chromosome 1q21, previously found to cause a dominantly inherited form, has recently been found to be homozygously mutated in one severe consanguineous case. Here we wished to determine the degree of genetic homogeneity or heterogeneity of autosomal recessive nemaline myopathy by linkage analysis of 45 families from 10 countries. Forty-one of the families showed linkage results compatible with linkage to markers in the nebulin region, the highest combined lod scores at zero recombination being 14.13 for the marker D2S2236. We found no indication of genetic heterogeneity for the typical form of nemaline myopathy. In four families with more severe forms of nemaline myopathy, however, linkage to both the nebulin and the TPM3 locus was excluded. Our results indicate that at least three genetic loci exist for autosomal recessive nemaline myopathy. Studies of additional families are needed to localise the as yet unknown causative genes, and to fully elucidate genotype-phenotype correlations.

Download full-text


Available from: Martin Lammens, Oct 10, 2015
19 Reads
  • Source
    • "Nemaline myopathy (NM) is a neuromuscular disorder characterized by muscle dysfunction and the presence of nemaline bodies (rods) in the muscle fibers. The rods are composed of thin filament and Z-disk proteins [1-4]. To date, nine different causative genes have been identified for NM: nebulin (NEB), skeletal muscle α-actin (ACTA1), slow α-tropomyosin (TPM3), β-tropomyosin (TPM2), slow troponin T (TNNT), cofilin-2 (CFL2), Kelch repeat and BTB (POZ) domain-containing 13 (KBTBD13; a member of the BTB/Kelch protein family), and Kelch-like family members 40 and 41 (KLHL40, KLHL41) [5-13]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Nemaline myopathy (NM) is a rare genetic muscle disorder, but one of the most common among the congenital myopathies. NM is caused by mutations in at least nine genes: Nebulin (NEB), α-actin (ACTA1), α-tropomyosin (TPM3), β-tropomyosin (TPM2), troponin T (TNNT1), cofilin-2 (CFL2), Kelch repeat and BTB (POZ) domain-containing 13 (KBTBD13), and Kelch-like family members 40 and 41 (KLHL40 and KLHL41). Nebulin is a giant (600 to 900 kDa) filamentous protein constituting part of the skeletal muscle thin filament. Around 90% of the primary structure of nebulin is composed of approximately 35-residue α-helical domains, which form super repeats that bind actin with high affinity. Each super repeat has been proposed to harbor one tropomyosin-binding site. Methods We produced four wild-type (WT) nebulin super repeats (S9, S14, S18, and S22), 283 to 347 amino acids long, and five corresponding repeats with a patient mutation included: three missense mutations (p.Glu2431Lys, p.Ser6366Ile, and p.Thr7382Pro) and two in-frame deletions (p.Arg2478_Asp2512del and p.Val3924_Asn3929del). We performed F-actin and tropomyosin-binding experiments for the nebulin super repeats, using co-sedimentation and GST (glutathione-S-transferase) pull-down assays. We also used the GST pull-down assay to test the affinity of WT nebulin super repeats for WT α- and β–tropomyosin, and for β-tropomyosin with six patient mutations: p.Lys7del, p.Glu41Lys, p.Lys49del, p.Glu117Lys, p.Glu139del and p.Gln147Pro. Results WT nebulin was shown to interact with actin and tropomyosin. Both the nebulin super repeats containing the p.Glu2431Lys mutation and nebulin super repeats lacking exon 55 (p.Arg2478_Asp2512del) showed weak affinity for F-actin compared with WT fragments. Super repeats containing the p.Ser6366Ile mutation showed strong affinity for actin. When tested for tropomyosin affinity, super repeats containing the p.Glu2431Lys mutation showed stronger binding than WT proteins to tropomyosin, and the super repeat containing the p.Thr7382Pro mutation showed weaker binding than WT proteins to tropomyosin. Super repeats containing the deletion p.Val3924_Asn3929del showed similar affinity for actin and tropomyosin as that seen with WT super repeats. Of the tropomyosin mutations, only p.Glu41Lys showed weaker affinity for nebulin (super repeat 18). Conclusions We demonstrate for the first time the existence of direct tropomyosin-nebulin interactions in vitro, and show that nebulin interactions with actin and tropomyosin are altered by disease-causing mutations in nebulin and tropomyosin.
    Skeletal Muscle 08/2014; 4(1):15. DOI:10.1186/2044-5040-4-15
  • Source
    • "Mutations in NEB1 and ACTA1 are the commonest causes of nemaline myopathy. Linkage analysis indicates that mutations in NEB1 account for at least 50% of all nemaline myopathy patients [25] whereas mutations in ACTA1 have been shown to cause approximately 25% of all nemaline myopathy, but 50% of the severe presentations [4]. Mutations in the other known causative genes probably contribute 5-10% of cases, with the remaining causative genes/mutations not yet identified, e.g. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in the skeletal muscle α-actin gene (ACTA1) cause congenital myopathies including nemaline myopathy, actin aggregate myopathy and rod-core disease. The majority of patients with ACTA1 mutations have severe hypotonia and do not survive beyond the age of one. A transgenic mouse model was generated expressing an autosomal dominant mutant (D286G) of ACTA1 (identified in a severe nemaline myopathy patient) fused with EGFP. Nemaline bodies were observed in multiple skeletal muscles, with serial sections showing these correlated to aggregates of the mutant skeletal muscle α-actin-EGFP. Isolated extensor digitorum longus and soleus muscles were significantly weaker than wild-type (WT) muscle at 4 weeks of age, coinciding with the peak in structural lesions. These 4 week-old mice were ~30% less active on voluntary running wheels than WT mice. The α-actin-EGFP protein clearly demonstrated that the transgene was expressed equally in all myosin heavy chain (MHC) fibre types during the early postnatal period, but subsequently became largely confined to MHCIIB fibres. Ringbinden fibres, internal nuclei and myofibrillar myopathy pathologies, not typical features in nemaline myopathy or patients with ACTA1 mutations, were frequently observed. Ringbinden were found in fast fibre predominant muscles of adult mice and were exclusively MHCIIB-positive fibres. Thus, this mouse model presents a reliable model for the investigation of the pathobiology of nemaline body formation and muscle weakness and for evaluation of potential therapeutic interventions. The occurrence of core-like regions, internal nuclei and ringbinden will allow analysis of the mechanisms underlying these lesions. The occurrence of ringbinden and features of myofibrillar myopathy in this mouse model of ACTA1 disease suggests that patients with these pathologies and no genetic explanation should be screened for ACTA1 mutations.
    PLoS ONE 12/2011; 6(12):e28699. DOI:10.1371/journal.pone.0028699 · 3.23 Impact Factor
  • Source
    • "The congenital muscle disease, nemaline myopathy, is a clinically and genetically heterogeneous condition caused by mutations in genes that encode skeletal muscle thin filament and thin filament-associated proteins (Laing et al., 1995; Nowak et al., 1999; Wallgren-Pettersson et al., 1999; Sanoudou and Beggs, 2001). Patients with nemaline myopathy are clinically defined by skeletal muscle weakness of varying onset and severity and the presence of electron-dense nemaline rods in the skeletal muscles (Wallgren-Pettersson et al., 1999; Sanoudou and Beggs, 2001; Nguyen and Hardeman, 2008). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Nemaline myopathy, the most common congenital myopathy, is caused by mutations in genes encoding thin filament and thin filament-associated proteins in skeletal muscles. Severely affected patients fail to survive beyond the first year of life due to severe muscle weakness. There are no specific therapies to combat this muscle weakness. We have generated the first knock-in mouse model for severe nemaline myopathy by replacing a normal allele of the α-skeletal actin gene with a mutated form (H40Y), which causes severe nemaline myopathy in humans. The Acta1(H40Y) mouse has severe muscle weakness manifested as shortened lifespan, significant forearm and isolated muscle weakness and decreased mobility. Muscle pathologies present in the human patients (e.g. nemaline rods, fibre atrophy and increase in slow fibres) were detected in the Acta1(H40Y) mouse, indicating that it is an excellent model for severe nemaline myopathy. Mating of the Acta1(H40Y) mouse with hypertrophic four and a half LIM domains protein 1 and insulin-like growth factor-1 transgenic mice models increased forearm strength and mobility, and decreased nemaline pathologies. Dietary L-tyrosine supplements also alleviated the mobility deficit and decreased the chronic repair and nemaline rod pathologies. These results suggest that L-tyrosine may be an effective treatment for muscle weakness and immobility in nemaline myopathy.
    Brain 11/2011; 134(Pt 12):3516-29. DOI:10.1093/brain/awr274 · 9.20 Impact Factor
Show more