Clinical and genetic heterogeneity in autosomal recessive nemaline myopathy.

Department of Medical Genetics, University of Helsinki, and The Folkhälsan Institute of Genetics, Finland.
Neuromuscular Disorders (Impact Factor: 3.13). 01/2000; 9(8):564-72. DOI: 10.1016/S0960-8966(99)00061-9
Source: PubMed

ABSTRACT Autosomal recessive nemaline (rod) myopathy is clinically and genetically heterogeneous. A clinically distinct, typical form, with onset in infancy and a non-progressive or slowly progressive course, has been assigned to a region on chromosome 2q22 harbouring the nebulin gene Mutations have now been found in this gene, confirming its causative role. The gene for slow tropomyosin TPM3 on chromosome 1q21, previously found to cause a dominantly inherited form, has recently been found to be homozygously mutated in one severe consanguineous case. Here we wished to determine the degree of genetic homogeneity or heterogeneity of autosomal recessive nemaline myopathy by linkage analysis of 45 families from 10 countries. Forty-one of the families showed linkage results compatible with linkage to markers in the nebulin region, the highest combined lod scores at zero recombination being 14.13 for the marker D2S2236. We found no indication of genetic heterogeneity for the typical form of nemaline myopathy. In four families with more severe forms of nemaline myopathy, however, linkage to both the nebulin and the TPM3 locus was excluded. Our results indicate that at least three genetic loci exist for autosomal recessive nemaline myopathy. Studies of additional families are needed to localise the as yet unknown causative genes, and to fully elucidate genotype-phenotype correlations.

  • Article: Nebulin
    [Show abstract] [Hide abstract]
    ABSTRACT: Nebulin is a giant, modular sarcomeric protein and although it was discovered over 2 decades ago, it remains one of the most nebulous components of striated muscle. Previously, several groups identified nebulin as the prime candidate molecule for functioning as a “ruler” to specify the precise lengths of the actin (thin) filaments in skeletal muscle, yet this proposal has never been proven. This article reviews the evidence implicating nebulin as a thin filament ruler, including the most recent studies highlighting its potentially extensive isoform diversity and exciting reports revealing its expression in cardiac tissue. Also examined are novel findings indicating that nebulin is actually a multifunctional filament system, perhaps playing roles in signal transduction, contractile regulation, and myofibril force generation; these ideas are especially intriguing given the growing number of mutations in this giant molecule that are associated with human myopathies.
    Trends in Cardiovascular Medicine 07/2003; 13(5):195-201. · 2.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Skeletal muscle function was measured in anaesthetised transgenic mice having a mutation in the TPM3 gene (slow α-tropomyosin), a similar mutation as found in some patients with nemaline myopathy, and was compared with control muscles. Measurements of isometric and dynamic muscle performance were done with electrical nerve stimulation at physiological temperatures. No muscle weakness was found in the transgenic muscles when performance was measured at muscle optimum length. This was true not only with full activation but also at lower activation levels, indicating that calcium sensitivity was not affected at this length. Also, fatigability was not affected in these conditions. However, isometric force of the muscles with the mutation in TPM3 was lower at lengths below optimum, with more impairment at decreasing length. As the muscles are active over a large range of different muscle lengths during daily activities, this finding may explain, at least in part, the muscle weakness experienced by patients with nemaline myopathy.
    Neuromuscular Disorders 12/2002; 12(10):952-957. · 3.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Over the past decade there have been major advances in defining the genetic basis of the majority of congenital myopathy subtypes. However the relationship between each congenital myopathy, defined on histological grounds, and the genetic cause is complex. Many of the congenital myopathies are due to mutations in more than one gene, and mutations in the same gene can cause different muscle pathologies. The International Standard of Care Committee for Congenital Myopathies performed a literature review and consulted a group of experts in the field to develop a summary of 1. the key features common to all forms of congenital myopathy and 2. the specific features that help to discriminate between the different genetic subtypes. The consensus statement was refined by two rounds of on-line survey, and a three-day workshop. This consensus statement provides guidelines to the physician assessing the infant or child with hypotonia and weakness. We summarise the clinical features that are most suggestive of a congenital myopathy, the major differential diagnoses and the features on clinical examination, investigations, muscle pathology and muscle imaging that are suggestive of a specific genetic diagnosis to assist in prioritisation of genetic testing of known genes. As next generation sequencing becomes increasingly used as a diagnostic tool in clinical practice, these guidelines will assist in determining which sequence variations are likely to be pathogenic.
    Neuromuscular Disorders 01/2013; · 3.13 Impact Factor

Full-text (2 Sources)

Available from
Jun 1, 2014