Article

Normoxic ventilation during resuscitation and outcome from asphyxial cardiac arrest in rats

The Department of Emergency Medicine, Wayne State University, Detroit Receiving Hospital, MI 48201, USA.
Resuscitation (Impact Factor: 3.96). 12/1999; 42(3):221-9. DOI: 10.1016/S0300-9572(99)00083-0
Source: PubMed

ABSTRACT The formation of reactive oxygen species during reperfusion is one trigger for neuronal injury after global cerebral ischemia. Because formation of reactive oxygen species requires delivery of molecular oxygen to ischemic tissue, restricting inspired oxygen during reperfusion may decrease neurological damage. This study examined whether ventilation with room air rather than pure oxygen during resuscitation would improve neurological recovery after cardiac arrest in rats. Adult, male rats were subjected to 8 min of asphyxia resulting in cardiac arrest. During resuscitation, rats were ventilated either with hyperoxia (FiO2 = 1.0) or normoxia (FiO2 = 0.21, room air). Neurobehavioral deficits were scored daily for 72 h after resuscitation, after which brains were collected for histology. Normoxia decreased arterial oxygen content. Other physiological parameters and mortality did not differ between groups. All surviving rats exhibited behavioral and histological signs of brain damage. Neurological deficit scores did not differ between normoxia and hyperoxia conditions at any time point. The number of ischemic neurons in the hippocampus also did not differ between groups. These data indicate neither benefit nor detriment of reducing inspired oxygen concentration during resuscitation from asphyxial cardiac arrest in rats.

Download full-text

Full-text

Available from: Shawn D Hicks, Jun 26, 2015
0 Followers
 · 
97 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mammalian pyruvate dehydrogenase complex (PDHC) is a mitochondrial matrix enzyme complex (greater than 7 million Daltons) that catalyzes the oxidative decarboxylation of pyruvate to form acetyl CoA, nicotinamide adenine dinucleotide (the reduced form, NADH), and CO(2). This reaction constitutes the bridge between anaerobic and aerobic cerebral energy metabolism. PDHC enzyme activity and immunoreactivity are lost in selectively vulnerable neurons after cerebral ischemia and reperfusion. Evidence from experiments carried out in vitro suggests that reperfusion-dependent loss of activity is caused by oxidative protein modifications. Impaired enzyme activity may explain the reduced cerebral glucose and oxygen consumption that occurs after cerebral ischemia. This hypothesis is supported by the hyperoxidation of mitochondrial electron transport chain components and NAD(H) that occurs during reperfusion, indicating that NADH production, rather than utilization, is rate limiting. Additional support comes from the findings that immediate postischemic administration of acetyl-L-carnitine both reduces brain lactate/pyruvate ratios and improves neurologic outcome after cardiac arrest in animals. As acetyl-L-carnitine is converted to acetyl CoA, the product of the PDHC reaction, it follows that impaired production of NADH is due to reduced activity of either PDHC or one or more steps in glycolysis. Impaired cerebral energy metabolism and PDHC activity are associated also with neurodegenerative disorders including Alzheimer's disease and Wernicke-Korsakoff syndrome, suggesting that this enzyme is an important link in the pathophysiology of both acute brain injury and chronic neurodegeneration.
    Journal of Neuroscience Research 01/2005; 79(1-2):240-7. DOI:10.1002/jnr.20293 · 2.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous observational studies have inconsistently associated early hyperoxia with worse outcomes after cardiac arrest, and have methodological limitations. We tested this association using a high-resolution database controlling for multiple disease-specific markers of severity of illness and care processes. This was a retrospective analysis of a single-center, prospective registry of consecutive cardiac arrest patients. We included patients who survived and were mechanically ventilated ≥24 h after arrest. Our main exposure was arterial oxygen tension (PaO2), which we categorized hourly for 24 h as severe hyperoxia (>300 mmHg), moderate or probable hyperoxia (101-299 mmHg), normoxia (60-100 mmHg) or hypoxia (<60 mmHg). We controlled for Utstein-style covariates, markers of disease severity and markers of care responsiveness. We performed unadjusted and multiple logistic regression to test the association between oxygen exposure and survival to discharge, and used ordered logistic regression to test the association of oxygen exposure with neurological outcome and Sequential Organ Failure Assessment (SOFA) score at 24 h. Of 184 patients, 36 % were exposed to severe hyperoxia and overall mortality was 54 %. Severe hyperoxia, but not moderate or probable hyperoxia, was associated with decreased survival in both unadjusted and adjusted analysis [adjusted odds ratio (OR) for survival 0.83 per hour exposure, P = 0.04]. Moderate or probable hyperoxia was not associated with survival but was associated with improved SOFA score 24 h (OR 0.92, P < 0.01). Severe hyperoxia was independently associated with decreased survival to hospital discharge. Moderate or probable hyperoxia was not associated with decreased survival and was associated with improved organ function at 24 h.
    Intensive Care Medicine 12/2014; 41(1). DOI:10.1007/s00134-014-3555-6 · 5.54 Impact Factor
  • Source
    PEDIATRICS 04/2002; 109(3):519-21. DOI:10.1542/peds.109.3.519 · 5.30 Impact Factor