Article

Conditional and unconditional inhibition of calcium-activated potassium channels by reversible protein phosphorylation

Laboratory of Signal Transduction, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA.
Journal of Biological Chemistry (Impact Factor: 4.6). 03/2000; 275(6):3749-54. DOI: 10.1074/jbc.275.6.3749
Source: PubMed

ABSTRACT Large conductance, calcium-activated potassium channels (BK(Ca) or maxi-K) are important determinants of membrane excitability in many cell types. We used patch clamp techniques to study the biochemical regulation of native BK(Ca) channel proteins by endogenous Ser/Thr-directed protein kinases and phosphatases in cell-free membrane patches from rat pituitary tumor cells (GH(4)C(1)). When protein kinase activity was blocked by removing ATP, endogenous protein phosphatases slowly increased BK(Ca) channel activity approximately 3-fold. Dephosphorylated channels could be activated fully by physiological increases in cytoplasmic calcium or membrane depolarization. In contrast, endogenous protein kinases inhibited BK(Ca) channel activity at two functionally distinct sites. A closely associated, cAMP-dependent protein kinase rapidly reduced channel activity in a conditional manner that could be overcome completely by increasing cytoplasmic free calcium 3-fold or 20 mV further depolarization. Phosphorylation at a pharmacologically distinct site inhibited channel activity unconditionally by reducing availability to approximately half that of maximum at all physiological calcium and voltages. Conditional versus unconditional inhibition of BK(Ca) channel activity through different protein kinases provides cells with a powerful computational mechanism for regulating membrane excitability.

0 Followers
 · 
32 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: Gases, such as nitric oxide (NO), carbon monoxide (CO), or hydrogen sulfide (H2S), termed gasotransmitters, play an increasingly important role in understanding of how electrical signaling of cells is modulated. H2S is well-known to act on various ion channels and receptors. In a previous study we reported that H2S increased calcium-activated potassium (BK) channel activity. Aims: The goal of the present study is to investigate the modulatory effect of BK channel phosphorylation on the action of H2S on the channel as well as to recalculate and determine the H2S concentrations in aqueous sodium hydrogen sulfide (NaHS) solutions. Methods: Single channel recordings of GH3, GH4, and GH4 STREX cells were used to analyze channel open probability, amplitude, and open dwell times. H2S was measured with an anion selective electrode. Results: The concentration of H2S produced from NaHS was recalculated taking pH, temperature salinity of the perfusate, and evaporation of H2S into account. The results indicate that from a concentration of 300 μM NaHS, only 11-13%, i.e., 34-41 μM is effective as H2S in solution. GH3, GH4, and GH4 STREX cells respond differently to phosphorylation. BK channel open probability (Po) of all cells lines used was increased by H2S in ATP-containing solutions. PKA prevented the action of H2S on channel Po in GH4 and GH4 STREX, but not in GH3 cells. H2S, high significantly increased Po of all PKG pretreated cells. In the presence of PKC, which lowers channel activity, H2S increased channel Po of GH4 and GH4 STREX, but not those of GH3 cells. H2S increased open dwell times of GH3 cells in the absence of ATP significantly. A significant increase of dwell times with H2S was also observed in the presence of okadaic acid. Conclusions: Our results suggest that phosphorylation by PKG primes the channels for H2S activation and indicate that channel phosphorylation plays an important role in the response to H2S.
    Frontiers in Physiology 11/2014; 5:431. DOI:10.3389/fphys.2014.00431
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies have indicated that the myogenic response (MR) in cerebral arteries is impaired in Fawn Hooded Hypertensive (FHH) rats and that transfer of a 2.4 megabase pair (Mbp) region of chromosome 1 (RNO1) containing 15 genes from the Brown Norway rat into the FHH genetic background restores MR in a FHH.1(BN) congenic strain. However, the mechanisms involved remain to be determined. The present study examined the role of the large conductance calcium-activated potassium (BK) channel in impairing the MR in FHH rats. Whole-cell patch-clamp studies of cerebral vascular smooth muscle cells (VSMCs) revealed that iberiotoxin (IBTX: BK inhibitor)-sensitive outward potassium (K(+)) channel current densities are 4-5 fold greater in FHH than in FHH.1(BN) congenic strain. Inside-out patches indicated that the BK channel open probability (NPo) is 10-fold higher and IBTX reduced NPo to a greater extent in VSMCs isolated from FHH than in FHH.1(BN) rats. Voltage sensitivity of the BK channel is enhanced in FHH as compared to FHH.1(BN) rats. The frequency and amplitude of spontaneous transient outward currents (STOCs) are significantly greater in VSMCs isolated from FHH than in FHH.1(BN) rats. However, the expression of the BK α and β-subunit proteins in cerebral vessels as determined by western blot is similar between the two groups. Middle cerebral arteries (MCAs) isolated from FHH rats exhibited an impaired MR and administration of IBTX restored this response. These results indicate that there is a gene on RNO1 that impairs MR in the MCAs of FHH rats by enhancing BK channel activity.
    AJP Heart and Circulatory Physiology 01/2014; DOI:10.1152/ajpheart.00636.2013 · 4.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A suite of models was developed to study the role of inositol 1,4,5-trisphosphate receptor 1 (IP3R1) in spinocerebellar ataxias (SCAs). Several SCAs are linked to reduced abundance of IP3R1 or to supranormal sensitivity of the receptor to activation by its ligand inositol 1,4,5-trisphosphate (IP3). Detailed multidimensional models have been created to simulate biochemical calcium signaling and membrane electrophysiology in cerebellar Purkinje neurons. In these models, IP3R1-mediated calcium release is allowed to interact with ion channel response on the cell membrane. Experimental findings in mice and clinical observations in humans provide data input for the models. The SCA modeling suite helps interpret experimental results and provides suggestions to guide experiments. The models predict IP3R1 supersensitivity in SCA1 and compensatory mechanisms in SCA1, SCA2, and SCA3. Simulations explain the impact of calcium buffer proteins. Results show that IP3R1-mediated calcium release activates voltage-gated calcium-activated potassium channels in the plasma membrane. The SCA modeling suite unifies observations from experiments in a number of SCAs. The cadre of simulations demonstrates the central role of IP3R1.
    Frontiers in Neuroscience 01/2014; 8:453. DOI:10.3389/fnins.2014.00453

David L. Armstrong