Unraveling the role of proteases in cancer.

Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA.
Clinica Chimica Acta (Impact Factor: 2.76). 03/2000; 291(2):113-35. DOI: 10.1016/S0009-8981(99)00224-7
Source: PubMed

ABSTRACT Investigators have been studying the expression and activity of proteases in the final steps of tumor progression, invasion and metastasis, for the past 30 years. Recent studies, however, indicate that proteases are involved earlier in progression, e.g., in tumor growth both at the primary and metastatic sites. Extracellular proteases may co-operatively influence matrix degradation and tumor cell invasion through proteolytic cascades, with individual proteases having distinct roles in tumor growth, invasion, migration and angiogenesis. In this review, we use cathepsin B as an example to examine the involvement of proteases in tumor progression and metastasis. We discuss the effect of interactions among tumor cells, stromal cells, and the extracellular matrix on the regulation of protease expression. Further elucidation of the role of proteases in cancer will allow us to design more effective inhibitors and novel protease-based drugs for clinical use.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Increased expression of cathepsins has diagnostic as well as prognostic value in several types of cancer. Here, we demonstrate a novel magnetic resonance imaging (MRI) method, which uses poly-L-glutamate (PLG) as an MRI probe to map cathepsin expression in vivo, in a rat brain tumor model. This noninvasive, high-resolution and non-radioactive method exploits the differences in the CEST signals of PLG in the native form and cathepsin mediated cleaved form. The method was validated in phantoms with known physiological concentrations, in tumor cells and in an animal model of brain tumor along with immunohistochemical analysis. Potential applications in tumor diagnosis and evaluation of therapeutic response are outlined.
    Scientific reports. 01/2014; 4:6081.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Blueberry anthocyanins-enriched extracts show benefits on cyclophosphamide (CTX)-induced rat lung damage.•Obvious pulmonary pathological improvement.•Decrease in lysosomal proteases, lung permeability and neutrophil infiltrates.•Increase in claudin-4 and zonula occluden-1 protein levels.•Inhibition of oxidative stress and inflammatory response.
    Chemico-Biological Interactions. 10/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The extracellular matrix (ECM) is the complex network of proteins that surrounds cells in multicellular organisms. Due to its diverse nature and composition, the ECM has a multifaceted role in both normal tissue homeostasis and pathophysiology. It provides structural support, segregates tissues from one another, and regulates intercellular communication. Furthermore, the ECM sequesters a wide range of growth factors and cytokines that may be released upon specific and well-coordinated cues. Regulation of the ECM is performed by the extracellular proteases, which are tasked with cleaving and remodeling this intricate and diverse protein matrix. Accordingly, extracellular proteases are differentially expressed in various tissue types and in many diseases such as cancer. In fact, metastatic dissemination of tumor cells requires degradation of extracellular matrices by several families of proteases, including metalloproteinases and serine proteases, among others. Extracellular proteases are emerging as strong candidate cancer biomarkers for aiding and predicting patient outcome. Not surprisingly, inhibition of these protumorigenic enzymes in animal models of metastasis has shown impressive therapeutic effects. As such, many of these proteolytic inhibitors are currently in various phases of clinical investigation. In addition to direct approaches, aberrant expression of extracellular proteases in disease states may also facilitate the selective delivery of other therapeutic or imaging agents. Herein, we outline extracellular proteases that are either bona fide or probable prognostic markers in breast cancer. Furthermore, using existing patient data and multiple robust statistical analyses, we highlight several extracellular proteases and associated inhibitors (eg, uPA, ADAMs, MMPs, TIMPs, RECK) that hold the greatest potential as clinical biomarkers. With the recent advances in high-throughput technology and targeted therapies, the incorporation of extracellular protease status in breast cancer patient management may have a profound effect on improving outcomes in this deadly disease.
    Breast Cancer: Targets and Therapy 03/2014; Volume 2014(6):81 - 91.

Full-text (2 Sources)

Available from
Jun 4, 2014