Structure of human guanylate-binding protein 1 representing a unique class of GTP-binding proteins.

Max-Planck-Institut für Molekulare Physiologie, Dortmund, Germany.
Nature (Impact Factor: 42.35). 03/2000; 403(6769):567-71. DOI: 10.1038/35000617
Source: PubMed

ABSTRACT Interferon-gamma is an immunomodulatory substance that induces the expression of many genes to orchestrate a cellular response and establish the antiviral state of the cell. Among the most abundant antiviral proteins induced by interferon-gamma are guanylate-binding proteins such as GBP1 and GBP2. These are large GTP-binding proteins of relative molecular mass 67,000 with a high-turnover GTPase activity and an antiviral effect. Here we have determined the crystal structure of full-length human GBP1 to 1.8 A resolution. The amino-terminal 278 residues constitute a modified G domain with a number of insertions compared to the canonical Ras structure, and the carboxy-terminal part is an extended helical domain with unique features. From the structure and biochemical experiments reported here, GBP1 appears to belong to the group of large GTP-binding proteins that includes Mx and dynamin, the common property of which is the ability to undergo oligomerization with a high concentration-dependent GTPase activity.


Available from: Louis Renault, Jan 12, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The myxovirus resistance (Mx) proteins are interferon-induced dynamin GTPases that can inhibit a variety of viruses. Recently, MxB, but not MxA, was shown to restrict HIV-1 by an unknown mechanism that likely occurs in close proximity to the host cell nucleus and involves the viral capsid. Here, we present the crystal structure of MxB and reveal determinants involved in HIV-1 restriction. MxB adopts an extended antiparallel dimer and dimerization, but not higher-ordered oligomerization, is critical for restriction. Although MxB is structurally similar to MxA, the orientation of individual domains differs between MxA and MxB, and their antiviral functions rely on separate determinants, indicating distinct mechanisms for virus inhibition. Additionally, MxB directly binds the HIV-1 capsid, and this interaction depends on dimerization and the N terminus of MxB as well as the assembled capsid lattice. These insights establish a framework for understanding the mechanism by which MxB restricts HIV-1.
    Cell Host & Microbe 10/2014; 16(5). DOI:10.1016/j.chom.2014.09.021 · 12.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Genetic analysis has suggested that the product of the Bacillus subtilis ysxC gene is essential for survival of the microorganism and hence may represent a target for the development of a novel anti-infective agent. B. subtilis YsxC is a member of the translation factor related class of GTPases and its crystal structure has been determined in an apo form and in complex with GDP and GMPPNP/Mg2+. Analysis of these structures has allowed us to examine the conformational changes that occur during the process of nucleotide binding and GTP hydrolysis. These structural changes particularly affect parts of the switch I and switch II region of YsxC, which become ordered and disordered, respectively in the “closed” or “on” GTP-bound state and disordered and ordered, respectively, in the “open” or “off” GDP-bound conformation. Finally, the binding of the magnesium cation results in subtle shifts of residues in the G3 region, at the start of switch II, which serve to optimize the interaction with a key aspartic acid residue. The structural flexibility observed in YsxC is likely to contribute to the role of the protein, possibly allowing transduction of an essential intracellular signal, which may be mediated via interactions with a conserved patch of surface-exposed, basic residues that lies adjacent to the GTP-binding site.
    Journal of Molecular Biology 05/2004; 339(2):265-278. DOI:10.1016/S0022-2836(04)00344-4 · 3.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Myxovirus resistance (Mx) proteins restrict replication of numerous viruses. They are closely related to membrane-remodeling fission GTPases, such as dynamin. Mx proteins can tubulate lipids and form rings or filaments that may interact directly with viral structures. GTPase domain dimerization is thought to allow crosstalk between the rungs of a tubular or helical assembly, facilitating constriction. We demonstrate that the GTPase domain of MxA dimerizes to facilitate catalysis, in a fashion analogous to dynamin. GTP binding is associated with the lever-like movement of structures adjacent to the GTPase domain, while GTP hydrolysis returns MxA to its resting state. Dimerization is not significantly promoted by substrate binding and occurs only transiently, yet is central to catalytic efficiency. Therefore, we suggest dimerization functions to coordinate the activity of spatially adjacent Mx molecules within an assembly, allowing their mechanical power strokes to be synchronized at key points in the contractile cycle.
    Structure 10/2014; 22(10):1433–1445. DOI:10.1016/j.str.2014.08.015 · 6.79 Impact Factor