Article

Control of actin assembly and disassembly at filament ends.

Department of Cell Biology, Washington University, Box 8228, St Louis, MO 631110, USA.
Current Opinion in Cell Biology (Impact Factor: 8.74). 03/2000; 12(1):97-103. DOI: 10.1016/S0955-0674(99)00062-9
Source: PubMed

ABSTRACT The most important discovery in the field is that the Arp2/3 complex nucleates assembly of actin filaments with free barbed ends. Arp2/3 also binds the sides of actin filaments to create a branched network. Arp2/3's nucleation activity is stimulated by WASP family proteins, some of which mediate signaling from small G-proteins. Listeria movement caused by actin polymerization can be reconstituted in vitro using purified proteins: Arp2/3 complex, capping protein, actin depolymerizing factor/cofilin, and actin. actin depolymerizing factor/cofilin increases the rate at which actin subunits leave pointed ends, and capping protein caps barbed ends.

Download full-text

Full-text

Available from: Dorothy A Schafer, Feb 05, 2014
0 Followers
 · 
221 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The occurrence of cyanobacterial toxic peptides, including microcystins (MCs), are an emerging health issue due to the eutrophication of water bodies. MCs have a strong influence on human cells, predominantly hepatocytes, however, toxicity was also observed in kidney, lung and dermal skin cells. Skin as the most external barrier of the human body is responsible for the maintenance of homeostasis of the whole organism. Simultaneously, skin cells may be the most exposed to MCs during recreational activity. The aim of this study was to examine the impact of MC-LR on processes indispensable for normal skin function and regeneration, namely, viability, migration and actin cytoskeleton organization of human keratinocytes. The results showed that short exposure to MC-LR does not affect proliferation of human skin keratinocytes but it is toxic after longer incubation in dose-dependent manner. Total disruption of the actin cytoskeleton was observed under the same MC-LR concentration. Furthermore, keratinocyte migration was inhibited at MC-LR concentrations of 50 μM after incubation for only 4 hours. Some of the negative impacts of MC-LR on the examined cell processes may be partly reversible. The observed effects, regarding the possible high exposition of keratinocytes to toxins including MCs, are severe and may cause diverse health problems.
    Toxicon 01/2014; 80. DOI:10.1016/j.toxicon.2014.01.003 · 2.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cell motility depends on the rapid assembly, aging, severing, and disassembly of actin filaments in spatially distinct zones. How a set of actin regulatory proteins that sustains actin-based force generation during motility work together in space and time remains poorly understood. We present our study of the distribution and dynamics of Arp2/3 complex, capping protein (CP), and actin-depolymerizing factor (ADF)/cofilin in actin "comet tails," using a minimal reconstituted system with nucleation-promoting factor (NPF)-coated beads. The Arp2/3 complex concentrates at nucleation sites near the beads as well as in the first actin shell. CP colocalizes with actin and is homogeneously distributed throughout the comet tail; it serves to constrain the spatial distribution of ATP/ADP-P(i) filament zones to areas near the bead. The association of ADF/cofilin with the actin network is therefore governed by kinetics of actin assembly, actin nucleotide state, and CP binding. A kinetic simulation accurately validates these observations. Following its binding to the actin networks, ADF/cofilin is able to break up the dense actin filament array of a comet tail. Stochastic severing by ADF/cofilin loosens the tight entanglement of actin filaments inside the comet tail and facilitates turnover through the macroscopic release of large portions of the aged actin network.
    Molecular biology of the cell 05/2011; 22(14):2541-50. DOI:10.1091/mbc.E11-01-0052 · 5.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dynamic assembly and disassembly of actin filaments is a major driving force for cell movements. Border cells in the Drosophila ovary provide a simple and genetically tractable model to study the mechanisms regulating cell migration. To identify new genes that regulate cell movement in vivo, we screened lethal mutations on chromosome 3R for defects in border cell migration and identified two alleles of the gene psidin (psid). In vitro, purified Psid protein bound F-actin and inhibited the interaction of tropomyosin with F-actin. In vivo, psid mutations exhibited genetic interactions with the genes encoding tropomyosin and cofilin. Border cells overexpressing Psid together with GFP-actin exhibited altered protrusion/retraction dynamics. Psid knockdown in cultured S2 cells reduced, and Psid overexpression enhanced, lamellipodial dynamics. Knockdown of the human homolog of Psid reduced the speed and directionality of migration in wounded MCF10A breast epithelial monolayers, whereas overexpression of the protein increased migration speed and altered protrusion dynamics in EGF-stimulated cells. These results indicate that Psid is an actin regulatory protein that plays a conserved role in protrusion dynamics and cell migration.
    Genes & development 03/2011; 25(7):730-41. DOI:10.1101/gad.2028611 · 12.64 Impact Factor