Cortical activity related to accuracy of letter recognition.

University of California at Davis, Davis, California 95616, USA.
NeuroImage (Impact Factor: 6.13). 03/2000; 11(2):111-23. DOI: 10.1006/nimg.1999.0528
Source: PubMed

ABSTRACT Previous imaging and neurophysiological studies have suggested that the posterior inferior temporal region participates in tasks requiring the recognition of objects, including faces, words, and letters; however, the relationship between accuracy of recognition and activity in that region has not been systematically investigated. In this study, positron emission tomography was used to estimate glucose metabolism in 60 normal adults performing a computer-generated letter-recognition task. Both a region of interest and a voxel-based method of analysis, with subject state and trait variables statistically controlled, found task accuracy to be: (1) negatively related to metabolism in the left ventrolateral inferior temporal occipital cortex (Brodmann's area 37, or ventrolateral BA 37) and (2) positively related to metabolism in a region of the right ventrolateral frontal cortex (Brodmann's areas 47 and 11, or right BA 47/11). Left ventrolateral BA 37 was significantly related both to hits and to false alarms, whereas the right BA 47/11 finding was related only to false alarms. The results were taken as supporting an automaticity mechanism for left ventrolateral BA 37, whereby task accuracy was associated with automatic letter recognition and in turn to reduced metabolism in this extrastriate area. The right BA 47/11 finding was interpreted as reflecting a separate component of task accuracy, associated with selectivity of attention broadly and with inhibition of erroneous responding in particular. The findings are interpreted as supporting the need for control of variance due to subject and task variables, not only in correlational but also in subtraction designs.

  • Source
    The World Bank, Global Partnership for Education Working Paper Series on Learning 2. 01/2012;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Visual word expertise is typically associated with enhanced ventral occipito-temporal (vOT) cortex activation in response to written words. Dehaene et al. (2007) utilized a passive viewing task and found that vOT response to written words was significantly stronger in literate compared to the illiterate subjects. However, recent neuroimaging findings have suggested that vOT response properties are highly dependent upon the task demand. Thus, it is unknown whether literate adults would show stronger vOT response to written words compared to illiterate adults during other cognitive tasks, such as perceptual matching. We addressed this issue by comparing vOT activations between literate and illiterate adults during a Chinese character and simple figure matching task. Unlike passive viewing, a perceptual matching task requires active shape comparison, therefore minimizing automatic word processing bias. We found that although the literate group performed better at Chinese character matching task, the two subject groups showed similar strong vOT responses during this task. Overall, the findings indicate that the vOT response to written words is not affected by expertise during a perceptual matching task, suggesting that the association between visual word expertise and vOT response may depend on the task demand.
    Neuroscience Letters 02/2014; · 2.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Synesthesia is a condition in which normal stimuli can trigger anomalous associations. In this study, we exploit synesthesia to understand how the synesthetic experience can be explained by subtle changes in network properties. Of the many forms of synesthesia, we focus on colored sequence synesthesia, a form in which colors are associated with overlearned sequences, such as numbers and letters (graphemes). Previous studies have characterized synesthesia using resting-state connectivity or stimulus-driven analyses, but it remains unclear how network properties change as synesthetes move from one condition to another. To address this gap, we used functional MRI in humans to identify grapheme-specific brain regions, thereby constructing a functional "synesthetic" network. We then explored functional connectivity of color and grapheme regions during a synesthesia-inducing fMRI paradigm involving rest, auditory grapheme stimulation, and audiovisual grapheme stimulation. Using Markov networks to represent direct relationships between regions, we found that synesthetes had more connections during rest and auditory conditions. We then expanded the network space to include 90 anatomical regions, revealing that synesthetes tightly cluster in visual regions, whereas controls cluster in parietal and frontal regions. Together, these results suggest that synesthetes have increased connectivity between grapheme and color regions, and that synesthetes use visual regions to a greater extent than controls when presented with dynamic grapheme stimulation. These data suggest that synesthesia is better characterized by studying global network dynamics than by individual properties of a single brain region.
    Journal of Neuroscience 08/2013; 33(35):14098-106. · 6.75 Impact Factor


Available from
May 17, 2014