naked cuticle encodes an inducible antagonist of Wnt signalling.

Department of Developmental Biology, Howard Hughes Medical Institute, Beckman Center, Stanford University School of Medicine, California 94305, USA.
Nature (Impact Factor: 42.35). 03/2000; 403(6771):789-95. DOI: 10.1038/35001615
Source: PubMed

ABSTRACT During animal development, cells have to respond appropriately to localized secreted signals. Proper responses to Hedgehog, transforming growth factor-beta, epidermal growth factor and fibroblast growth factor/Ras signals require cognate inducible antagonists such as Patched, Dad, Argos and Sprouty. Wnt signals are crucial in development and neoplasia. Here we show that naked cuticle (nkd), a Drosophila segment-polarity gene, encodes an inducible antagonist for the Wnt signal Wingless (Wg). In fly embryos and imaginal discs nkd transcription is induced by Wg. In embryos, decreased nkd function has an effect similar to excess Wg; at later stages such a decrease appears to have no effect. Conversely, overproduction of Nkd in Drosophila and misexpression of Nkd in the vertebrate Xenopus laevis result in phenotypes resembling those of loss of Wg/Wnt function. nkd encodes a protein with a single EF hand (a calcium-binding motif) that is most similar to the recoverin family of myristoyl switch proteins. Nkd may therefore link ion fluxes to the regulation of the potency, duration or distribution of Wnt signals. Signal-inducible feedback antagonists such as nkd may limit the effects of Wnt proteins in development and disease.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Broad dermal Wnt signaling is required for patterned induction of hair follicle placodes and subsequent Wnt signaling in placode stem cells is essential for induction of dermal condensates, cell clusters of precursors for the hair follicle dermal papilla (DP). Progression of hair follicle formation then requires coordinated signal exchange between dermal condensates and placode stem cells. However, it remains unknown whether continued Wnt signaling in DP precursor cells plays a role in this process, largely due to the long-standing inability to specifically target dermal condensates for gene ablation. Here we use the Tbx18(Cre) knockin mouse line to ablate the Wnt-responsive transcription factor β-catenin specifically in these cells at E14.5 during the first wave of guard hair follicle formation. In the absence of β-catenin, canonical Wnt signaling is effectively abolished in these cells. Sox2(+) dermal condensates initiate normally, however by E16.5 guard hair follicle numbers are strongly reduced and by E18.5 most whiskers and guard hair follicles are absent, suggesting that active Wnt signaling in dermal condensates is important for hair follicle formation to proceed after induction. To explore the molecular mechanisms by which Wnt signaling in dermal condensates regulates hair follicle formation, we analyze genome-wide the gene expression changes in embryonic β-catenin null DP precursor cells. We find altered expression of several signaling pathway genes, including Fgfs and Activin, both previously implicated in hair follicle formation. In summary, these data reveal a functional role of Wnt signaling in DP precursors for embryonic hair follicle formation and identify Fgf and Activin signaling as potential effectors of Wnt signaling-regulated events.
    Developmental Biology 12/2013; 385(2). DOI:10.1016/j.ydbio.2013.11.023 · 3.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Wnt signaling plays an important role in development and disease. In this review we focus on the role of the canonical Wnt signaling pathway in somatic stem cell biology and its critical role in tissue homeostasis. We present current knowledge how Wnt/β-catenin signaling affects tissue stem cell behavior in various organ systems, including the gut, mammary gland, the hematopoietic and nervous system. We discuss evidence that canonical Wnt signaling can both maintain potency and an undifferentiated state as well as cause differentiation in somatic stem cells, depending on the cellular and environmental context. Based on studies by our lab and others, we will attempt to explain the dichotomous behavior of this signaling pathway in determining cell fate decisions and put special emphasis on the interaction of β-catenin with two highly homologous co-activator proteins, CBP and p300, to shed light on the their differential role in the outcome of Wnt/β-catenin signaling. Furthermore, we review current knowledge regarding the aberrant regulation of Wnt/β-catenin signaling in cancer biology, particularly its pivotal role in the context of cancer stem cells. Finally, we discuss data demonstrating that small molecule modulators of the β-catenin/co-activator interaction can be used to shift the balance between undifferentiated proliferation and differentiation, which potentially presents a promising therapeutic approach to stem cell based disease mechanisms.
    Stem cell reviews 05/2014; 10(4). DOI:10.1007/s12015-014-9515-2 · 3.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Notch signaling is initiated upon contact of cells expressing Notch receptors with those expressing ligands. While examining the dynamic response of NIH 3T3 cells to cells expressing the Notch ligand Jagged1, we found that Notch signaling resulted in increased levels of the ligand Jagged1. Induction of Jagged1 was delayed relative to the generation of active Notch and dependent on the transcription factor p63. The induced Jagged1 had no apparent autocrine effects on Notch signaling but could promote signaling in naı̈ve cells. These results describe a mechanism through which Notch signaling can be relayed from cell to cell.
    Experimental Cell Research 06/2004; 296(2):173-182. DOI:10.1016/S0014-4827(04)00075-8 · 3.37 Impact Factor