Article

Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometric analysis of the recombinant human macrophage colony stimulating factor beta and derivatives.

Department of Chemistry, Oregon State University, Corvallis, USA.
Journal of the American Society for Mass Spectrometry (Impact Factor: 3.59). 04/2000; 11(3):237-43. DOI: 10.1016/S1044-0305(99)00139-7
Source: PubMed

ABSTRACT The potential of electrospray ionization (ESI) Fourier transform ion cyclotron mass spectrometry (FTICR-MS) to assist in the structural characterization of monomeric and dimeric derivatives of the macrophage colony stimulating factor beta (rhM-CSF beta) was assessed. Mass spectrometric analysis of the 49 kDa protein required the use of sustained off-resonance irradiation (SORI) in-trap cleanup to reduce adduction. High resolution mass spectra were acquired for a fully reduced and a fully S-cyanylated monomeric derivative (approximately 25 kDa). Mass accuracy for monomeric derivatives was better than 5 ppm, after applying a new calibration method (i.e., DeCAL) which eliminates space charge effects upon high accuracy mass measurements. This high mass accuracy allowed the direct determination of the exact number of incorporated cyanyl groups. Collisionally induced dissociation using SORI yielded b- and y-fragment ions within the N- and C-terminal regions for the monomeric derivatives, but obtaining information on other regions required proteolytic digestion, or potentially the use of alternative dissociation methods.

0 Bookmarks
 · 
49 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The gas-phase fragmentation reactions of a series of site-directed mutagenesis products of Staphylococcus aureus dihydroneopterin aldolase have been examined by multistage tandem mass spectrometry (MS/MS and MS(3)) in a linear quadrupole ion trap in order to explore the utility of this instrumentation for routine 'top-down' recombinant protein characterization. Following a rapid low resolution survey of the fragmentation behavior of the precursor ions from the wild type (WT) protein, selected charge states were subjected to detailed structural characterization by using high resolution 'zoom' and 'ultrazoom' resonance ejection MS/MS product ion scans. Dissociation of the [M + 18H](18+) charge state yielded a range of product ions from which extensive sequence information could be derived. In contrast, dissociation of the [M + 20H](20+) charge state resulted in a single dominant y(96) product ion formed by fragmentation between adjacent Ile/Gly residues, with only limited sequence coverage. Further extensive sequence information was readily obtained however, by MS(3) dissociation of this initial product. From the combined MS/MS and MS(3) spectra an overall sequence coverage of 66.9%, with fragmentation of 85 of the 127 amide bonds within the WT protein, was obtained. MS/MS and MS(3) of three of the four site-directed mutagenesis products (E29A), (Y61F) and (E81A) were found to yield essentially identical product ion spectra to the WT protein, indicating that these modifications had no significant influence on the fragmentation behavior. The specific site of modification could be unambiguously determined in each case by characterization of product ions resulting from fragmentation of amide bonds on either side of the mutation site. In contrast, MS/MS and MS(3) of the K107A mutant led to significantly different product ion spectra dominated by cleavages occurring N-terminal to proline, which restricted the ability to localize the modification site to within only an 8 amino acid region of the sequence. This work highlights the need for further studies to characterize the charge state, sequence and structural dependence to the low energy collision induced dissociation reactions of multiply protonated intact protein ions.
    The Analyst 03/2006; 131(2):291-302. · 3.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The introduction of electron capture dissociation (ECD) to electrospray (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) constitutes a significant advance in the structural analysis of biomolecules. The fundamental features and benefits of ECD are discussed in this review. ECD is currently unique to FT-ICR MS and the fundamentals of that technique are outlined. The advantages and complementarity of ECD in relation to other tandem mass spectrometry (MS/MS) techniques, such as infrared multiphoton dissociation (IRMPD) and sustained off-resonance collision-induced dissociation (SORI-CID), are discussed. The instrumental considerations associated with implementation of ECD, including activated ion techniques and coupling to on-line separation techniques, are covered, as are the allied processes electronic excitation dissociation (EED), electron detachment dissociation (EDD), and hot electron capture (HECD). A major theme of this review is the role of ECD in proteomics, particularly for characterization of post-translational modifications (phosphorylation, glycosylation, carboxyglutamic acid, sulfation, acylation, and methionine oxidation) and the top-down approach to protein identification. The application of ECD to the analysis of polymers, peptide nucleic acids, and oligonucleotides is also discussed.
    Mass Spectrometry Reviews 01/2005; 24(2):201-22. · 7.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The advent of soft ionization techniques, notably electrospray and laser desorption ionization methods, has enabled the extension of mass spectrometric methods to large molecules and molecular complexes. This both greatly extends the applications of mass spectrometry and makes the activation and dissociation of complex ions an integral part of these applications. This review emphasizes the most promising methods for activation and dissociation of complex ions and presents this discussion in the context of general knowledge of reaction kinetics and dynamics largely established for small ions. We then introduce the characteristic differences associated with the higher number of internal degrees of freedom and high density of states associated with molecular complexity. This is reflected primarily in the kinetics of unimolecular dissociation of complex ions, particularly their slow decay and the higher energy content required to induce decomposition—the kinetic shift (KS). The longer trapping time of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) significantly reduces the KS, which presents several advantages over other methods for the investigation of dissociation of complex molecules. After discussing general principles of reaction dynamics related to collisional activation of ions, we describe conventional ways to achieve single- and multiple-collision activation in FT-ICR MS. Sustained off-resonance irradiation (SORI)—the simplest and most robust means of introducing the multiple collision activation process—is discussed in greatest detail. Details of implementation of this technique, required control of experimental parameters, limitations, and examples of very successful application of SORI-CID are described. The advantages of high mass resolving power and the ability to carry out several stages of mass selection and activation intrinsic to FT-ICR MS are demonstrated in several examples. Photodissociation of ions from small molecules can be effected using IR or UV/vis lasers and generally requires tuning lasers to specific wavelengths and/or utilizing high flux, multiphoton excitation to match energy levels in the ion. Photodissociation of complex ions is much easier to accomplish from the basic physics perspective. The quasi-continuum of vibrational states at room temperature makes it very easy to pump relatively large amounts of energy into complex ions and infrared multiphoton dissociation (IRMPD) is a powerful technique for characterizing large ions, particularly biologically relevant molecules. Since both SORI-CID and IRMPD are slow activation methods they have many common characteristics. They are also distinctly different because SORI-CID is intrinsically selective (only ions that have a cyclotron frequency close to the frequency of the excitation field are excited), whereas IRMPD is not (all ions that reside on the optical path of the laser are excited). There are advantages and disadvantages to each technique and in many applications they complement each other. In contrast with these slow activation methods, the less widely appreciated activation method of surface induced dissociation (SID) appears to offer unique advantages because excitation in SID occurs on a sub-picosecond time scale, instantaneously relative to the observation time of any mass spectrometer. Internal energy deposition is quite efficient and readily adjusted by altering the kinetic energy of the impacting ion. The shattering transition—instantaneous decomposition of the ion on the surface—observed at high collision energies enables access to dissociation channels that are not accessible using SORI-CID or IRMPD. Finally, we discuss some approaches for tailoring the surface to achieve particular aims in SID. © 2004 Wiley Periodicals, Inc., Mass Spec Rev 24:135–167, 2005
    Mass Spectrometry Reviews 03/2004; 24(2):135 - 167. · 7.74 Impact Factor

Full-text

View
0 Downloads
Available from