Article

Identification of two distinct regions of allelic imbalance on chromosome 18Q in metastatic prostate cancer.

Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
International Journal of Cancer (Impact Factor: 5.01). 04/2000; 85(5):654-8. DOI: 10.1002/(SICI)1097-0215(20000301)85:5<654::AID-IJC10>3.0.CO;2-D
Source: PubMed

ABSTRACT Like most cancers, prostate cancer (CaP) is believed to be the result of the accumulation of genetic alterations within cells. Previous studies have implicated numerous chromosomal regions with elevated rates of allelic imbalance (AI), using mostly primary CaPs with an unknown disease outcome. These regions of AI are proposed sites for tumor suppressor genes. One of the regions previously implicated as coding for at least one tumor suppressor gene is the long arm of chromosome 18 (18q). To confirm this observation, as well as to narrow the critical region for this putative tumor suppressor, we analyzed 32 metastatic CaP specimens for AI on chromosome 18q. Thirty-one of these 32 specimens (96.8%) exhibited AI at one or more loci on chromosome 18q. Our analysis using 17 polymorphic markers revealed statistically significant AI on chromosome 18q at 3 markers, D18S35, D18S64 and D18S461. Using these markers as a guide, we have been able to identify 2 distinct minimum regions of AI on 18q. The first region is between the genetic markers D18S1119 and D18S64. The second region lies more distal on the long arm of the chromosome and is between the genetic markers D18S848 and D18S58. To determine if 18q loss is a late event in the progression of CaP, we also examined prostatic intraepithelial neoplasia (PIN) and primary prostate tumors from 17 patients for AI with a subset of 18q markers. We found significantly higher AI in the metastatic samples. Our results are consistent with 18q losses occurring late in CaP progression.

0 Followers
 · 
73 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cytogenetic, molecular cytogenetic, and molecular studies of prostate cancer have produced a large volume of data about chromosomal loci that are aberrant in prostate cancer. The cumulative data on prostate cancer reveal allelic losses on chromosome arms 2q, 3p, 5q, 6q, 7q, 8p, 9p, 10p, 10q, 11p, 11q, 12p, 13q, 16q, 17p, 17q, 18q, and 21q, but there is a great deal of variability between studies. In most cases, the frequency of allelic loss is higher in metastatic tissues or hormone-refractory tumors than in primary tumors. There also seem to be discrepancies in the genetic findings depending on methods employed. Molecular genetic studies, using polymerase chain reaction (PCR) analysis of microsatellite markers, demonstrated allelic loss at 7q31.1, whereas fluorescence in situ hybridization analysis showed a gain at the same region. Com-mon sites of allelic loss that are consistently observed by various methods seem to exist on chromosome arms 8p, 10q, 13q, and 16q. PTEN/MMAC1 has been identified on 10q23.3 and was found to be frequently mutated in advanced prostate cancer. Other regions are also considered to harbor genes associated with the development and progression of prostate cancer, and these could be included in the diagnostic methods for the substaging of prostate cancer.
    International Journal of Clinical Oncology 11/2000; 5(6):345-354. DOI:10.1007/PL00012062 · 2.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chromosomal deletion appears to be the earliest as well as the most frequent somatic genetic alteration during carcinogenesis. It inactivates a tumor suppressor gene in three ways, that is, revealing a gene mutation through loss of heterozygosity as proposed in the two-hit theory, inducing haploinsufficiency through quantitative hemizygous deletion and associated loss of expression, and truncating a genome by homozygous deletion. Whereas the two-hit theory has guided the isolation of many tumor suppressor genes, the haploinsufficiency hypothesis seems to be also useful in identifying target genes of chromosomal deletions, especially for the deletions detected by comparative genomic hybridization (CGH). At present, a number of chromosomal regions have been identified for their frequent deletions in prostate cancer, including 2q13-q33, 5q14-q23, 6q16-q22, 7q22-q32, 8p21-p22, 9p21-p22, 10q23-q24, 12p12-13, 13q14-q21, 16q22-24, and 18q21-q24. Strong candidate genes have been identified for some of these regions, including NKX3.1 from 8p21, PTEN from 10q23, p27/Kip1 from 12p13, and KLF5 from 13q21. In addition to their location in a region with frequent deletion, there are functional and/or genetic evidence supporting the candidacy of these genes. Thus far PTEN is the most frequently mutated gene in prostate cancer, and KLF5 showed the most frequent hemizygous deletion and loss of expression. A tumor suppressor role has been demonstrated for NKX3.1, PTEN, and p27/Kip1 in knockout mice models. Such genes are important targets of investigation for the development of biomarkers and therapeutic regimens.
    Cancer and metastasis reviews 02/2001; 20(3-4):173-93. DOI:10.1023/A:1015575125780 · 6.45 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A three-dimensional (3D) integrated rotating-wall vessel cell-culture system was used to evaluate the interaction between a human prostate cancer cell line, LNCaP, and microcarrier beads alone, or microcarrier beads previously seeded with either prostate or bone stromal cells. Upon coculture of LNCaP cells with microcarrier beads either in the presence or in the absence of prostate or bone stromal cells, 3D prostate organoids were formed with the expected hormonal responsiveness to androgen, increased cell growth, and prostate-specific antigen production. In this communication, we define permanent phenotypic and genotypic changes of LNCaP cells upon coculture with microcarrier beads alone, or with microcarrier beads previously seeded with either prostate or bone stromal cells. Most notably, we observed selective genetic changes, i.e., chromosomal losses or gains, as evaluated by both conventional cytogenetic and comparative genomic hybridization, in LNCaP sublines derived from the prostate organoids. Moreover, the derivative LNCaP cells appear to have altered growth profiles, and exhibit permanent and stable changes in response to androgen, estrogen, and growth factors. The derivative LNCaP sublines showed increased anchorage-independent growth rate, and enhanced tumorigenicity and metastatic potential when inoculated orthotopically in castrated athymic mice. Our results support the hypothesis that further nonrandom genetic and phenotypic changes in prostate cancer epithelial cells can occur through an event that resembles "adaptive mutation" such as has been described in bacteria subjected to nutritional starvation. The occurrence of such permanent changes may be highly contact dependent, and appears to be driven by specific microenvironmental factors surrounding the tumor cell epithelium grown as 3D prostate organoids.
    In Vitro Cellular & Developmental Biology - Animal 04/2001; 37(3):127-40. DOI:10.1290/1071-2690(2001)037<0127:PPAGCO>2.0.CO;2 · 1.00 Impact Factor

Preview

Download
1 Download