Sucrose consumption increases naloxone-induced c-Fos immunoreactivity in limbic forebrain.

Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA.
AJP Regulatory Integrative and Comparative Physiology (Impact Factor: 3.28). 04/2000; 278(3):R712-9.
Source: PubMed

ABSTRACT Opioids have long been known to have an important role in feeding behavior, particularly related to the rewarding aspects of food. Considerable behavioral evidence suggests that sucrose consumption induces endogenous opioid release, affecting feeding behavior as well as other opioid-mediated behaviors, such as analgesia, dependence, and withdrawal. In the present study, rats were given access to a 10% sucrose solution or water for 3 wk, then they were injected with 10 mg/kg naloxone or saline. Brains were subsequently analyzed for c-Fos immunoreactivity (c-Fos-IR) in limbic and autonomic regions in the forebrain and hindbrain. Main effects of sucrose consumption or naloxone injection were seen in several areas, but a significant interaction was seen only in the central nucleus of the amygdala and in the lateral division of the periaqueductal gray. In the central nucleus of the amygdala, naloxone administration to those rats drinking water significantly increased c-Fos-IR, an effect that was significantly enhanced by sucrose consumption, suggesting an upregulation of endogenous opioid tone in this area. The data from this study indicate that the central nucleus of the amygdala has a key role in the integration of gustatory, hedonic, and autonomic signals as they relate to sucrose consumption, if not to food intake regulation in general. Furthermore, the data from this study lend further support to the hypothesis that sucrose consumption induces the release of endogenous opioids.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Dental pain, including toothache, is one of the most prevalent types of orofacial pain, causing severe, persistent pain that has a significant negative effect on quality of life, including eating disturbances, mood changes, and sleep disruption. As the primary cause of toothache pain is injury to the uniquely innervated dental pulp, rodent models of this injury provide the opportunity to study neurobiological mechanisms of tissue injury-induced persistent pain. Here we evaluated behavioral changes in mice with a dental pulp injury (DPI) produced by mechanically exposing the pulp to the oral environment. We monitored the daily life behaviors of mice with DPI, including measures of eating, drinking, and movement. During the first 48hours, the only parameter affected by DPI was locomotion, which was reduced. There was also a significant short-term decrease in the amount of weight gained by DPI animals that was not related to food consumption. As cold allodynia is frequently observed in individuals experiencing toothache pain, we tested whether mice with DPI demonstrate an aversion to drinking cold liquids using a cold-sucrose consumption test. Surprisingly, mice with DPI increased their consumption of sucrose solution, to over 150% of baseline, regardless of temperature. Both the weight loss and increased sucrose intake in the first 2days of injury were reversed by administration of indomethacin. These findings indicate that enhanced sucrose consumption may be a reliable measure of orofacial pain in rodents, and suggest that alterations in energy expenditure and motivational behaviors are under-recognized outcomes of tooth injury.
    Pain 04/2013; · 5.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Obesity is on the rise in many industrialized countries, and a large part of this epidemic phenomenon is attributed to overeating induced by ubiquitous highly palatable and high energy density food cues.The ability to maintain adequate nutrient intake is critical for survival. Due to this, complex interrelated neuronal circuits have been developed in the mammalian brain to regulate many aspects of the feeding behavior. There are certain strong homeostatic mechanisms that are regulated by the hypothalamus and the brainstem, which sustain body weight. However, in the current “obesogenic” environment, food intake is largely determined by non-homeostatic or hedonic factors, primarily processed in corticolimbic and higher cortical brain regions. This paper presents a review that describes the mechanisms responsible for the processing of food reward, the interaction between homeostatic and reward mechanisms, as well as its implications in hyperphagia and obesity.
    Revista Portuguesa de Endocrinologia, Diabetes e Metabolismo. 01/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The effects of intraperitoneal (ip) d-glucose administration on antinociception were studied in male Long-Evans rats. Rats were assessed for antinociception using the hot-water tail-withdrawal procedure (54±0.2° C) to determine if peripheral administration of d-glucose (300, 560, or 720mg/kg) would enhance morphine-mediated antinociception (MMA) (1.0, 3.0, 4.2, 5.6, and 10.0mg/kg cumulative-dosing regime) and if d-glucose (560, 720, or 1000mg/kg) alone could produce antinociceptive activity that was naloxone (0.32mg/kg) reversible. Additionally, the actions of d-glucose on MMA were compared with a stereoisomer, l-glucose, which is not metabolized. The results of these studies demonstrate that peripheral administration of d-glucose significantly enhances MMA and that d-glucose alone produces antinociceptive actions that are potentially mediated by the endogenous opioid system. Furthermore, l-glucose failed to have an effect on MMA suggesting that the alterations in antinociception seen with d-glucose are not due to stressors such as osmolality or injection. The current studies provide evidence that d-glucose alteration of antinociception is not simply a response to taste or gustation.
    Pharmacology Biochemistry and Behavior 12/2013; · 2.61 Impact Factor