Upregulation of cytosolic chaperonin CCT subunits during recovery from chemical stress that causes accumulation of unfolded proteins.

HSP Research Institute, Kyoto Research Park, Japan.
European Journal of Biochemistry (Impact Factor: 3.58). 04/2000; 267(6):1658-64.
Source: PubMed

ABSTRACT The chaperonin containing TCP-1 (CCT) is a molecular chaperone consisting of eight subunit species and assists in the folding of actin, tubulin and some other cytosolic proteins. We examined the stress response of CCT subunit proteins in mammalian cultured cells using chemical stressors that cause accumulation of unfolded proteins. Levels of CCT subunit proteins in HeLa cells were coordinately and transiently upregulated under continuous chemical stress with sodium arsenite. CCT subunit levels in several mammalian cell lines were also upregulated during recovery from chemical stress caused by sodium arsenite or a proline analogue, L-azetidine-2-carboxylic acid. Several unidentified proteins that were newly synthesized and associated with CCT were found to increase concomitantly with CCT subunits themselves and known substrates during recovery from the stress. These results suggest that CCT plays important roles in the recovery of cells from protein damage by assisting in the folding of proteins that are actively synthesized and/or renatured during this period.

  • Source
    Aquatic Toxicology 02/2011; · 3.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Growth hormone (GH) in rhesus macaque in vitro oocyte maturation (IVM) has been shown to increase cumulus expansion and development of embryos to the 9-16 cell stage in response to 100 ng/ml recombinant human GH (r-hGH) supplementation during IVM. Although developmental endpoints for metaphase II (MII) oocytes and embryos are limited in the macaque, gene expression analysis can provide a mechanism to explore GH action on IVM. In addition, gene expression analysis may allow molecular events associated with improved cytoplasmic maturation to be detected. In this study, gene expression of specific mRNAs in MII oocytes and cumulus cells that have or have not been exposed to r-hGH during IVM was compared. In addition, mRNA expression was compared between in vitro and in vivo-matured metaphase II (MII) oocytes and germinal vesicle (GV)-stage oocytes. Only 2 of 17 genes, insulin-like growth factor 2 (IGF2) and steroidogenic acute regulator (STAR), showed increased mRNA expression in MII oocytes from the 100 ng/ml r-hGH treatment group compared with other IVM treatment groups, implicating insulin-like growth factor (IGF) and steroidogenesis pathways in the oocyte response to GH. The importance of IGF2 is notable, as expression of IGF1 was not detected in macaque GV-stage or MII oocytes or cumulus cells.
    Molecular Reproduction and Development 01/2009; 77(4):353-62. DOI:10.1002/mrd.21152 · 2.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rsp5 is an essential E3 ubiquitin ligase in Saccharomyces cerevisiae and is known to ubiquitinate plasma membrane permeases followed by endocytosis and vacuolar degradation. We previously isolated the rsp5 mutant that is hypersensitive to various stresses, suggesting that Rsp5 is involved in degradation of stress-induced abnormal proteins. Here, we analyzed the ability to refold the proteins by stress proteins in the rsp5 mutant. The transcription of stress protein genes in the rsp5 mutant was significantly lower than that in the wild-type strain when exposed to temperature up-shift, ethanol or sorbitol. Interestingly, the amounts of transcription factors Hsf1 and Msn4 were remarkably defective in the rsp5 mutant. These results suggest that expression of stress proteins are mediated by Rsp5 and that Rsp5 primarily regulates post-translational modification of Hsf1 and Msn4.
    FEBS Letters 07/2006; 580(14):3433-8. DOI:10.1016/j.febslet.2006.05.016 · 3.34 Impact Factor