Article

Characterization of the capsid protein gene from a nodavirus strain affecting the Atlantic halibut Hippoglossus hippoglossus and design of an optimal reverse-transcriptase polymerase chain reaction (RT-PCR) detection assay.

Institute of Marine Research, Department of Aquaculture, Bergen-Nordnes, Norway.
Diseases of Aquatic Organisms (Impact Factor: 1.73). 02/2000; 39(2):79-88. DOI: 10.3354/dao039079
Source: PubMed

ABSTRACT A 1349 nucleotide fragment of the RNA2 from a nodavirus affecting Atlantic halibut Hippoglossus hippoglossus was characterised and the nuclotide sequence (accession no. AJ245641) was employed to develop an optimal reverse-transcriptase polymerase chain reaction (RT-PCR) detection assay. The sequenced part of the RNA2 of Atlantic halibut nodavirus (strain AH95NorA) was highly similar in organisation to that of the RNA2 of striped jack nervous necrosis virus (SJNNV), and comprised features common to all nodaviruses. These characteristics confirmed that the virus that causes viral encephalopathy and retinopathy (VER) in Atlantic halibut is a nodavirus. The nucleotide sequence of the 1349 nucleotide fragment of Atlantic halibut nodavirus RNA2 was 80% identical to the RNA2 of SJNNV. The T2 region (830 nucleotides) of the RNA2 of Atlantic halibut nodavirus shared 98% of the nucleotide sequence when compared with the homologous region of barfin flounder nervous necrosis virus (BFNNV), while the nucleotide sequence identity to SJNNV in this region was 76%. Phylogenetic analysis based on the nucleotide sequences of the T4 region (421 nucleotides) of Atlantic halibut nodavirus and of other fish nodaviruses revealed a close relationship to the nodaviruses of the barfin flounder clad that have been found in other cold-water species (Pacific cod Gadus macrocephalus and barfin founder Verasper moseri). The nucleotide sequence of the RNA2 of Atlantic halibut nodavirus included some features that differ from that of SJNNV. The ORF of the RNA2 of Atlantic halibut nodavirus lacked 6 nucleotides through a single deletion and a 5-nucleotide deletion, separated by 4 nucleotides. The 3'-non-encoding region contained a 21 nucleotide insert and a 3 nucleotide deletion when compared with SJNNV. In comparison with the RNA2 of SJNNV, the 3'-non-encoding region showed a nucleotide sequence identity of 84.5%. A primer set based on the Atlantic halibut nodavirus nucleotide sequence was employed in order to design an optimal RT-PCR. The detection limit of the PCR was 10 to 100 copies of plasmid, while the detection limit of the RT-PCR assay was 100 to 1000 copies of in vitro transcribed viral RNA.

0 Bookmarks
 · 
45 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study presents a novel automatic assay for targeted ribonucleic acid (RNA) extraction and a one-step reverse transcription loop-mediated-isothermal-amplification (RT-LAMP) process for the rapid detection of viruses from tissue samples by utilizing an integrated microfluidic system. By utilizing specific probe-conjugated magnetic beads, target RNA samples can be specifically recognized and hybridized onto the surface of the magnetic beads which are mixed with whole tissue lysates, followed by the synthesis of complementary deoxyribonucleic acid (cDNA) and isothermal amplification of target genes simultaneously with the incorporation of two specific primer sets. The nervous necrosis virus (NNV), the most common aquaculture pathogen, with a mortality rate in infected fish ranging from 80% to 100%, has been selected to verify the performance of the developed miniature system. Experimental results showed that the sensitivity of the integrated microfluidic LAMP system is about 100-fold higher when compared to a conventional one-step reverse-transcript polymerase chain reaction (RT-PCR) process. Significantly, the entire protocol from sample pre-treatment to target gene amplification can be completed within 60 min in an automatic manner without cross-reactions with other tested virus, bacteria and eukaryotic cells. Consequently, this integrated microfluidic LAMP system may provide a powerful platform for rapid purification and detection of virus samples.
    Biosensors and Bioelectronics 01/2011; 26(5):2045-52. · 5.44 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Viral nervous necrosis (VNN) is a serious viral disease affecting farmed sea bass (Dicentrarchus labrax). Only scarce molecular data are available on the disease-causing betanodavirus populations in Tunisia. Therefore, we carried out the first molecular survey of betanodaviruses in farmed sea bass and sea bream (Sparus aurata) along the Tunisian coasts. Among 81 samples from five farms, 20 tested positive with RT-PCR, not only in clinical cases but also in asymptomatic fish before and during outbreaks. Positive fish were found in all farms, except in one farm investigated in the south of Tunisia. Sequencing the fragments of both genomic components (RNA1 and RNA2) in 16 isolates revealed that the Tunisian viruses were related to the red-spotted grouper nervous necrosis virus (RGNNV) genotype. Furthermore, the newly sequenced isolates were generally highly related to one another suggesting a recent common ancestor. They also showed high identities with other isolates obtained from wild fishes in the Mediterranean, but were slightly more divergent from strains recently obtained from farmed fishes in the Mediterranean. The poor genetic diversity of the viral population along the Tunisian coasts is striking. One hypothesis is that it is the result of the maintenance of a homogenous genetic pool among infected wild fish, groupers for instance and subsequent dissemination to farmed fish over the seasons.
    Virus Genes 01/2013; · 1.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The transcript levels of viral RNAs, selected T-cell marker and cytokine genes, toll like receptor (TLR) 7, and two interferon stimulated genes (ISG) were analysed in sexually immature adult Atlantic halibut (Hippoglossus hippoglossus L.) experimentally infected with nodavirus. The expression of the T-cell markers, TLR7 and the cytokine genes was further explored in in vitro stimulated anterior kidney leucocytes (AK leucocytes) isolated from the experiment fish and from additional untreated non-injected fish. The levels of viral RNA1 and RNA2 were increasing in brain and eye at around 4 and 8weeks post injection (wpi), respectively, and still increasing at the end of the experiment, especially in eye. Immuno-positive cells and signs of vacuolisation in both brain and eye were seen at 14wpi. Increased transcript levels of TCRβ, CD4-2, CD4, CD8α, and Lck in brain and eye of the experimentally infected halibut suggested an involvement of halibut T-cells in the immune response against nodavirus. Interestingly, a similar expression pattern of TCRβ, CD4 and Lck was seen in both brain and eye. However, compared to brain that showed elevated transcript levels of TCRβ, CD4 and Lck mainly at 10 and 14wpi, the increase appeared earlier between 3 and 4wpi in the eye. Yet, an increase in the transcript level of IFNγ was seen at 10 and 14wpi in both organs. Moreover, elevated levels of TLR7, IL-1β, IL-6, ISG15 and Mx were detected in vivo. The in vitro experiments, stimulating AK leucocytes with ConA-PMA, imiquimod or nodavirus, further supported an involvement of IL-6 and IFNγ in the immune response against nodavirus and the involvement of CD8β(+) cells. Results from the present study thus indicate an importance of T-cells, IFNγ and the analysed ISGs in the immune response against nodavirus in Atlantic halibut, and would be of great help in future vaccination trials giving the possibility to monitor the immune response rather than mortality during post-vaccination challenge experiments.
    Developmental and comparative immunology 10/2011; 37(1):139-50. · 3.29 Impact Factor