Influence of different parameters on drug release from hydrogel systems to a biomembrane model. Evaluation by differential scanning calorimetry technique.

Dipartimento di Scienze Chimiche, Università di Catania, Italy.
Biomaterials (Impact Factor: 8.31). 05/2000; 21(8):821-33. DOI: 10.1016/S0142-9612(99)00252-5
Source: PubMed

ABSTRACT A comparative study on the drug release capacity of four water swellable polymeric systems was carried out by differential scanning calorimetry (DSC). The polymeric systems chosen were alpha,beta-polyaspartahydrazide (PAHy) crosslinked by glutaraldehyde (GLU) (PAHy-GLU) or by ethyleneglycoldiglycidylether (EGDGE), (PAHy-EGDGE), polyvinylalcohol (PVA) crosslinked by glutaraldehyde (PVA-GLU) and alpha,beta-poly(N-hydroxyethyl)-DL-aspartamide (PHEA) by gamma irradiation (PHEA-gamma matrices). The degree of crosslinking for PAHy-GLU, PAHy-EGDGE and PVA-GLU samples was about 0.4 and 0.8. These hydrogels were characterized as free of drugs and were loaded with diflunisal (DFN) (approximately 2.5% w/w). Diflunisal, a non-steroidal anti-inflammatory drug, has been chosen as a model drug to be incorporated into polymeric matrices to follow the release processes of a drug from these hydrogels to a model membrane made by unilamellar vesicles of dipalmitoylphosphatidylcholine (DPPC). Differential scanning calorimetry appears to be a suitable technique to follow the transfer kinetics of the drug from the controlled release system to the biomembrane model. The drug releases from all the considered polymeric hydrogels, were compared with the release observed from the drug solid form by examining the effects on the thermotropic behaviour of DPPC unilamellar vesicles. The release kinetics of the drug from hydrogels were followed at 25, 37 and 50 degrees C to evidence the influence of temperature on the drug release and on the successive transfer to biological membrane model. Particularly, it appears evident that the total amount of drug transferred and the release rate are affected by the polymer crosslinking degree (it increases with crosslinking decrease) as well as by the nature of crosslinking agent. In fact, the drug release profiles from PAHy-GLU samples are more differentiated than those from PAHy-EGDGE. The effect of parameters correlating with the properties of starting polymer, such as water-affinity, crystallinity, glass-to-rubber transition temperature and affinity towards drug molecules, has been also evaluated.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Differential Scanning Calorimetry (DSC) is a highly sensitive technique to study the thermotropic properties of many different biological macromolecules and extracts. Since its early development, DSC has been applied to the pharmaceutical field with excipient studies and DNA drugs. In recent times, more attention has been applied to lipid-based drug delivery systems and drug interactions with biomimetic membranes. Highly reproducible phase transitions have been used to determine values, such as, the type of binding interaction, purity, stability, and release from a drug delivery mechanism. This review focuses on the use of DSC for biochemical and pharmaceutical applications.
    Journal of pharmacy & bioallied sciences. 01/2011; 3(1):39-59.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Drug delivery systems involving the use of polymers are widely studied and discovery of biocompatible polymers has become the focus of research in this area. Psoralen loaded poly(DL-lactide-co-glycolide) (PLGA) microspheres to be used in PUVA therapy (psoralen and UVA irradiation (ultraviolet A, 320-400 nm) of psoriasis were identified in paraffin sections by histological analysis. The psoralen loaded PLGA microspheres were prepared using the solvent evaporation technique. They were spherical and possessed an external smooth surface as observed by scanning electron microscopy (SEM) analysis. This study describes a modification in the routine preparation of microsphere samples for examination by light microscopy. The changes involved fixative agents and/or stains allowing the identification of microspheres containing a non-fluorescent material. The preservation and identification of microspheres in tissues for histological processing in paraffin was greatly improved by these modifications as proven by our results.
    Micron 02/2008; 39(1):40-4. · 1.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The research of radiation effects on drugs over the past 60 years has mainly dealt with radiation sterilization of individual active pharmaceutical ingredients (APIs) in the form of pure substances or injectable solutions. However, the emergence of novel systems for drug administration and targeting via controlled drug delivery (CDD) and/or controlled drug release (CDR) has extended the use of irradiation with respect to pharmaceuticals: the capacity of radiation to act as an initiator of crosslinking has been used in the manufacturing and modification of a number of polymeric carriers with an added advantage of reducing the microbial load of products at the same time. The application of irradiation to these novel systems requires the understanding of radiation action not only on APIs alone but also on drug carriers and on the functioning of the integral CDD/CDR systems. In this paper, the significance of CDD/CDR systems is considered with a special emphasis on the role of irradiation for sterilization and crosslinking in the developments over the past 15 years. Radiation sterilization, crosslinking and degradation of the principal forms of drug carrier systems and the effects of irradiation on the release kinetics of APIs are discussed in light of radiation chemical principles. Regulatory aspects pertaining to radiation sterilization of drugs are also considered. Relevant results are summarized in tabular form.
    Radiation Physics and Chemistry 01/2008; · 1.38 Impact Factor