Phosphorylated morpholine acetal human neurokinin-1 receptor antagonists as water-soluble prodrugs.

Merck Research Laboratories, P.O. Box 2000, Rahway, New Jersey 07065, and Merck, Sharp & Dohme, Neuroscience Research Centre, Terlings Park, Eastwick Road, Harlow, Essex CM20 2QR, U.K.
Journal of Medicinal Chemistry (Impact Factor: 5.61). 04/2000; 43(6):1234-41. DOI: 10.1021/jm990617v
Source: PubMed

ABSTRACT The regioselective dibenzylphosphorylation of 2 followed by catalytic reduction in the presence of N-methyl-D-glucamine afforded 2-(S)-(1-(R)-(3, 5-bis(trifluoromethyl)phenyl)ethoxy)-3-(S)-(4-fluoro)phenyl-4-(5-(2- phosphoryl-3-oxo-4H,-1,2,4-triazolo)methylmorpholine, bis(N-methyl-D-glucamine) salt, 11. Incubation of 11 in rat, dog, and human plasma and in human hepatic subcellular fractions in vitro indicated that conversion to 2 would be expected to occur in vivo most readily in humans during hepatic circulation. Conversion of 11 to 2 occurred rapidly in vivo in the rat and dog with the levels of 11 being undetectable within 5 min after 1 and 8 mg/kg doses iv in the rat and within 15 min after 0.5, 2, and 32 mg/kg doses iv in the dog. Compound 11 has a 10-fold lower affinity for the human NK-1 receptor as compared to 2, but it is functionally equivalent to 2 in preclinical models of NK-1-mediated inflammation in the guinea pig and cisplatin-induced emesis in the ferret, indicating that 11 acts as a prodrug of 2. Based in part on these data, 11 was identified as a novel, water-soluble prodrug of the clinical candidate 2 suitable for intravenous administration in humans.