Inhibition of the expression of penicillin resistance in Streptococcus pneumoniae by inactivation of cell wall muropeptide branching genes

Laboratory of Microbiology, The Rockefeller University, New York, NY 10021, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.67). 05/2000; 97(9):4891-6. DOI: 10.1073/pnas.080067697
Source: PubMed


Penicillin-resistant strains of Streptococcus pneumoniae contain low affinity penicillin-binding proteins and often also produce abnormal indirectly crosslinked cell walls. However the relationship between cell wall abnormality and penicillin resistance has remained obscure. We now show that the genome of S. pneumoniae contains an operon composed of two genes (murM and murN) that encode enzymes involved with the biosynthesis of branched structured cell wall muropeptides. The sequences of murMN were compared in two strains: the penicillin-susceptible strain R36A producing the species-specific pneumococcal cell wall peptidoglycan in which branched stem peptides are rare, and the highly penicillin-resistant transformant strain Pen6, the cell wall of which is enriched for branched-structured stem peptides. The two strains carried different murM alleles: murM of the penicillin-resistant strain Pen6 had a "mosaic" structure encoding a protein that was only 86.5% identical to the product of murM identified in the isogenic penicillin-susceptible strain R36A. Mutants of R36A and Pen6 in which the murMN operon was interrupted by insertion-duplication mutagenesis produced peptidoglycan from which all branched muropeptide components were missing. The insertional mutant of Pen6 carried a pbp2x gene with the same "mosaic" sequence found in Pen6. On the other hand, inactivation of murMN in strain Pen6 and other resistant strains caused a virtually complete loss of penicillin resistance. Our observations indicate that the capacity to produce branched cell wall precursors plays a critical role in the expression of penicillin resistance in S. pneumoniae.

Download full-text


Available from: Sergio Raposo Filipe,
10 Reads
  • Source
    • "The newly emerged clones also carry the competence operon (Table 3) and acquisition of antibiotic resistance determinants from the majority vaccine type strains through genetic transformation seems to have occurred during the pre-PCV7 era [49]. Clones 6A (ST2191), 19A (ST276) and 15A (ST63) must have pre-existed as minority components of the complex nasopharyngeal flora in the era prior to the introduction of the PCV7 vaccine [9,50] and must have “witnessed” the same selective pressure of antibiotic use that has led to the emergence of drug resistance lineages in the pre-PCV7 era. "
    [Show abstract] [Hide abstract]
    ABSTRACT: We used mouse models of pneumococcal colonization and disease combined with full genome sequencing to characterize three major drug resistant clones of S. pneumoniae that were recovered from the nasopharynx of PCV7-immunized children in Portugal. The three clones - serotype 6A (ST2191), serotype 15A (ST63) and serotype 19A (ST276) carried some of the same drug resistance determinants already identified in nasopharyngeal isolates from the pre-PCV7 era. The three clones were able to colonize efficiently the mouse nasopharyngeal mucosa where populations of these pneumococci were retained for as long as 21 days. During this period, the three clones were able to asymptomatically invade the olfactory bulbs, brain, lungs and the middle ear mucosa and established populations in these tissues. The virulence potential of the three clones was poor even at high inoculum (10(5) CFU per mouse) concentrations in the mouse septicemia model and was undetectable in the pneumonia model. Capsular type 3 transformants of clones 6A and 19A prepared in the laboratory produced lethal infection at low cell concentration (10(3) CFU per mouse) but the same transformants became impaired in their potential to colonize, indicating the importance of the capsular polysaccharide in both disease and colonization. The three clones were compared to the genomes of 56 S. pneumoniae strains for which sequence information was available in the public databank. Clone 15A (ST63) only differed from the serotype 19F clone G54 in a very few genes including serotype so that this clone may be considered the product of a capsular switch. While no strain with comparable degree of similarity to clone 19A (ST276) was found among the sequenced isolates, by MLST this clone is a single locust variant (SLV) of Denmark14-ST230 international clone. Clone 6A (ST2191) was most similar to the penicillin resistant Hungarian serotype 19A clone.
    PLoS ONE 09/2013; 8(9):e74867. DOI:10.1371/journal.pone.0074867 · 3.23 Impact Factor
  • Source
    • "Moreover, additional research may reveal novel mechanisms involved in the development of Van tolerance. For example, it is well known that the genetic determinants involved with the branching process of pneumococcal cell walls are the murMN genes (Filipe and Tomasz, 2000). Inactivation of these genes not only causes the elimination of branched peptides from the cell wall, but the complete loss of penicillin resistance and an increased susceptibility to lysis when exposed to low concentrations of a variety of cell wall inhibitors, including Van (Filipe et al., 2002). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Vancomycin, a glycopeptide antimicrobial agent, represents the last line of defence against a wide range of multi-resistant Gram-positive pathogens such as enterococci, staphylococci and streptococci. However, vancomycin-resistant enterococci and staphylococci, along with vancomycin-tolerant clinical isolates, are compromising the therapeutic efficacy of vancomycin. It is conceivable that tolerance may emerge during prolonged vancomycin use. It has not been until recently, however, that the molecular basis of this tolerance began to be understood. Superoxide anions might be involved in the bactericidal activity of vancomycin in enterococci, and recent evidence suggests that the stringent response is partly responsible for vancomycin tolerance in Enterococcus faecalis. The mechanism of vancomycin tolerance in Staphylococcus aureus and Streptococcus pneumoniae is sometimes associated with a reduction of autolysin activity. Vancomycin tolerance in S. aureus and S. pneumoniae also appears to be somehow related with the two-component regulatory systems linked to cell envelope stress, although the precise molecular regulatory pathways remain poorly defined.
    Environmental Microbiology Reports 12/2011; 3(6):640-50. DOI:10.1111/j.1758-2229.2011.00254.x · 3.29 Impact Factor
  • Source
    • "For general tests with chloramphenicol, carbenicillin, pefloxacin, tetracycline and trimethoprim, we used gradient antibiotic plates [34]. Minimal inhibitory concentrations (MICs) for chloramphenicol and carbenicillin were determined by population analysis profiling [35]. Briefly, serial dilutions of early stationary phase cultures were plated on LB agar plates containing different concentrations of chloramphenicol or carbenicillin. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The genome of Pseudomonas aeruginosa contains at least three genes encoding eukaryotic-type Ser/Thr protein kinases, one of which, ppkA, has been implicated in P. aeruginosa virulence. Together with the adjacent pppA phosphatase gene, they belong to the type VI secretion system (H1-T6SS) locus, which is important for bacterial pathogenesis. To determine the biological function of this protein pair, we prepared a pppA-ppkA double mutant and characterised its phenotype and transcriptomic profiles. Phenotypic studies revealed that the mutant grew slower than the wild-type strain in minimal media and exhibited reduced secretion of pyoverdine. In addition, the mutant had altered sensitivity to oxidative and hyperosmotic stress conditions. Consequently, mutant cells had an impaired ability to survive in murine macrophages and an attenuated virulence in the plant model of infection. Whole-genome transcriptome analysis revealed that pppA-ppkA deletion affects the expression of oxidative stress-responsive genes, stationary phase σ-factor RpoS-regulated genes, and quorum-sensing regulons. The transcriptome of the pppA-ppkA mutant was also analysed under conditions of oxidative stress and showed an impaired response to the stress, manifested by a weaker induction of stress adaptation genes as well as the genes of the SOS regulon. In addition, expression of either RpoS-regulated genes or quorum-sensing-dependent genes was also affected. Complementation analysis confirmed that the transcription levels of the differentially expressed genes were specifically restored when the pppA and ppkA genes were expressed ectopically. Our results suggest that in addition to its crucial role in controlling the activity of P. aeruginosa H1-T6SS at the post-translational level, the PppA-PpkA pair also affects the transcription of stress-responsive genes. Based on these data, it is likely that the reduced virulence of the mutant strain results from an impaired ability to survive in the host due to the limited response to stress conditions.
    BMC Genomics 08/2011; 12(1):437. DOI:10.1186/1471-2164-12-437 · 3.99 Impact Factor
Show more