Article

Currie RW, Ellison JA, White RF, Feuerstein GZ, Wang X, Barone FCBenign focal ischemic preconditioning induces neuronal Hsp70 and prolonged astrogliosis with expression of Hsp27. Brain Res 863:169-181

Laboratory of Molecular Neurobiology, Department of Anatomy and Neurobiology, Faculty of Medicine, Dalhousie University, Halifax, Canada.
Brain Research (Impact Factor: 2.83). 05/2000; 863(1-2):169-81. DOI: 10.1016/S0006-8993(00)02133-8
Source: PubMed

ABSTRACT We have established a focal preconditioning (PC) paradigm that produces significant and prolonged ischemic tolerance (IT) of the brain to subsequent permanent middle cerebral artery occlusion (MCAO). PC using 10 min of MCAO induces brain tolerance at 1-7 days of reperfusion that requires active protein synthesis. The protective protein(s) involved are unknown. In these studies the increased transcription and translation of the inducible 70-kDa heat shock protein (Hsp70) and the 27-kDa heat shock protein (Hsp27), and astrogliosis/glial fibrillary acidic protein (GFAP) were determined by Northern analysis and immunohistochemistry following PC. Cellular localization of proteins was determined by double labeling. PC produced no brain injury but did increase Hsp70 mRNA transiently at 6 h and increased Hsp27 mRNA later at 24 h for at least 5 days. Protein expression induced by PC exhibited a similar profile. Hsp70 protein was primarily expressed in neurons from 1 to 5 days post-PC throughout the PC cortex. Hsp27 protein expression was initiated later for a much longer period of time. A remarkable astroglyosis was verified with increased astrocytic Hsp27 from 1 to 7 days after PC. Gliosis with increased Hsp27 in the PC cortex was still present but reduced 4 weeks after PC. Therefore, PC that results in brain tolerance/neuroprotection increases neuronal Hsp70 in the PC cortex and activated astrocytic Hsp27 in the PC cortex in a temporal fashion associated with developing IT. The short duration of benign ischemia (PC) that produces IT produces a robust, long-lived cellular and protein synthetic response that extends throughout the entire cortex (i.e. well beyond the MCA perfusion territory). The resulting IT is associated with changes in astrocyte-activation that might provide increased support and protection from injury. Although both Hsp70 and Hsp27 may participate in the neuroprotection/brain tolerance induced by PC, the temporal expression patterns of these proteins indicate that they are not solely responsible for the tolerance to brain injury.

0 Followers
 · 
76 Views
  • Source
    • "HSP27-transgenic mice exhibit reduced infarcts after transient cerebral ischemia [18], and viral delivery of HSP27 and intraperitoneal injection of PEP1-HSP27, but not HSP27 recombinant protein, into ischemic animal models are also protective [19], [20]. Finally, endogenous induction of HSP27 was observed in ischemia-surviving cells [21] and in ischemic preconditioning models [22], [23], suggesting that HSP27 is associated with cellular survival following cerebral ischemia. Phosphorylation and oligomerization of HSP27 are both essential for mediating neuroprotection against ischemic neuronal injury in HSP27 transgenic mouse models [24]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Although challenging, neuroprotective therapies for ischemic stroke remain an interesting strategy for countering ischemic injury and suppressing brain tissue damage. Among potential neuroprotective molecules, heat shock protein 27 (HSP27) is a strong cell death suppressor. To assess the neuroprotective effects of HSP27 in a mouse model of transient middle cerebral artery occlusion, we purified a "physiological" HSP27 (hHSP27) from normal human lymphocytes. hHSP27 differed from recombinant HSP27 in that it formed dimeric, tetrameric, and multimeric complexes, was phosphorylated, and contained small amounts of αβ-crystallin and HSP20. Mice received intravenous injections of hHSP27 following focal cerebral ischemia. Infarct volume, neurological deficit scores, physiological parameters, and immunohistochemical analyses were evaluated 24 h after reperfusion. Intravenous injections of hHSP27 1 h after reperfusion significantly reduced infarct size and improved neurological deficits. Injected hHSP27 was localized in neurons on the ischemic side of the brain. hHSP27 suppressed neuronal cell death resulting from cytochrome c-mediated caspase activation, oxidative stress, and inflammatory responses. Recombinant HSP27 (rHSP27), which was artificially expressed and purified from Escherichia coli, and dephosphorylated hHSP27 did not have brain protective effects, suggesting that the phosphorylation of hHSP27 may be important for neuroprotection after ischemic insults. The present study suggests that hHSP27 with posttranslational modifications provided neuroprotection against ischemia/reperfusion injury and that the protection was mediated through the inhibition of apoptosis, oxidative stress, and inflammation. Intravenously injected human HSP27 should be explored for the treatment of acute ischemic strokes.
    PLoS ONE 06/2013; 8(6):e66001. DOI:10.1371/journal.pone.0066001 · 3.23 Impact Factor
  • Source
    • "The accumulation of unfolded proteins in the cytoplasm also induces the expression of molecular chaperones such as HSP70. HSP70 is the major stress-induced cytoplasmic chaperone, and its role in brain ischemia and ischemic tolerance has been studied intensively39,40,41,42. Recent research also implied that HSP70 might interact with the autophagy pathway to exert beneficial effects in neurodegenerative diseases43,44. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Aim: To investigate whether endoplasmic reticulum (ER) stress participates in the neuroprotective effects of ischemic preconditioning (IPC)-induced neuroprotection and autophagy activation in rat brains. Methods: The right middle cerebral artery in SD rats was occluded for 10 min to induce focal cerebral IPC, and was occluded permanently 24 h later to induce permanent focal ischemia (PFI). ER stress inhibitor salubrinal (SAL) was injected via intracerebral ventricle infusion 10 min before the onset of IPC. Infarct volume and motor behavior deficits were examined after the ischemic insult. The protein levels of LC3, p62, HSP70, glucose-regulated protein 78 (GRP 78), p-eIF2α and caspase-12 in the ipsilateral cortex were analyzed using immunoblotting. LC3 expression pattern in the sections of ipsilateral cortex was observed with immunofluorescence. Results: Pretreatment with SAL (150 pmol) abolished the neuroprotective effects of IPC, as evidenced by the significant increases in mortality, infarct volume and motor deficits after PFI. At the molecular levels, pretreatment with SAL (150 pmol) significantly increased p-eIF2α level, and decreased GRP78 level after PFI, suggesting that SAL effectively inhibited ER stress in the cortex. Furthermore, the pretreatment with SAL blocked the IPC-induced upregulation of LC3-II and downregulation of p62 in the cortex, thus inhibiting the activation of autophagy. Moreover,SAL blocked the upregulation of HSP70, but significantly increased the cleaved caspase-12 level, thus promoting ER stress-dependent apoptotic signaling in the cortex. Conclusion: ER stress-induced autophagy might contribute to the neuroprotective effect of brain ischemic preconditioning.
    Acta Pharmacologica Sinica 04/2013; 34(5). DOI:10.1038/aps.2013.34 · 2.50 Impact Factor
  • Source
    • "Zheng et al. [55] recently demonstrated that the interaction between Hsp70 and the NF-κB:IκB complex significantly inhibits NF-κB activation and leads to a decrease in NF-κB-regulated genes in MCAO-treated Hsp70 transgenic mice. The expression of Hsp70 and Hsp27 can be induced in glial cells and neurons by a wide range of noxious stimuli including ischemia [56, 57], epileptic seizure [58], and hyperthermia [59]. Neuroprotective effects of Hsp70 against ischemic injury have been reported for drugs that induce Hsp70 expression [60] and in Hsp70 transgenic mice [61]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Stroke is a dynamic event in the brain involving heterogeneous cells. There is now compelling clinical evidence that prolonged, moderate cerebral hypothermia initiated within a few hours after severe ischemia can reduce subsequent neuronal death and improve behavioral recovery. The neuroprotective role of hypothermia is also well established in experimental animals. However, the mechanism of hypothermic neuroprotection remains unclear, although, presumably involves the ability of hypothermia to suppress a broad range of injurious factors. In this paper, we addressed this issue by utilizing comprehensive gene and protein expression analyses of ischemic rat brains. To predict precise target molecules, we took advantage of the therapeutic time window and duration of hypothermia necessary to exert neuroprotective effects. We proposed that hypothermia contributes to protect neuroinflammation, and identified candidate molecules such as MIP-3α and Hsp70 that warrant further investigation as targets for therapeutic drugs acting as "hypothermia-like neuroprotectants."
    12/2010; 2011:809874. DOI:10.4061/2011/809874
Show more