Article

Energetics of rat papillary muscle during contractions with sinusoidal length changes.

Department of Physiology, Monash University, Clayton, Victoria 3168, Australia.
AJP Heart and Circulatory Physiology (Impact Factor: 4.01). 06/2000; 278(5):H1545-54.
Source: PubMed

ABSTRACT The mechanical efficiency of rat cardiac muscle was determined using a contraction protocol involving cyclical, sinusoidal length changes and phasic stimulation at physiological frequencies (1-4 Hz). Experiments were performed in vitro (27 degrees C) using rat left ventricular papillary muscles. Efficiency was determined from measurements of the net work performed and enthalpy produced by muscles during a series of 40 contractions. Net mechanical efficiency was defined as the percentage of the total, suprabasal enthalpy output that appeared as mechanical work. Maximum efficiency was approximately 15% at contraction frequencies between 2 and 2.5 Hz. At lower and higher frequencies, efficiency was approximately 10%. Enthalpy output per cycle was independent of cycle frequency at all but the highest frequency used. The basis of the high efficiency between 2 and 2.5 Hz was that work output was also greatest at these frequencies. At these frequencies, the duration of the applied length change was well matched to the kinetics of force generation, and active force generation occurred throughout the shortening period.

0 Followers
 · 
57 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to determine whether the net efficiency of mammalian muscles depends on muscle fibre type. Experiments were performed in vitro (35°C) using bundles of muscle fibres from the slow-twitch soleus and fast-twitch extensor digitorum longus (EDL) muscles of the mouse. The contraction protocol consisted of 10 brief contractions, with a cyclic length change in each contraction cycle. Work output and heat production were measured and enthalpy output (work + heat) was used as the index of energy expenditure. Initial efficiency was defined as the ratio of work output to enthalpy output during the first 1 s of activity. Net efficiency was defined as the ratio of the total work produced in all the contractions to the total, suprabasal enthalpy produced in response to the contraction series, i.e. net efficiency incorporates both initial and recovery metabolism. Initial efficiency was greater in soleus (30 ± 1%; n = 6) than EDL (23 ± 1%; n = 6) but there was no difference in net efficiency between the two muscles (12.6 ± 0.7% for soleus and 11.7 ± 0.5% for EDL). Therefore, more recovery heat was produced per unit of initial energy expenditure in soleus than EDL. The calculated efficiency of oxidative phosphorylation was lower in soleus than EDL. The difference in recovery metabolism between soleus and EDL is unlikely to be due to effects of changes in intracellular pH on the enthalpy change associated with PCr hydrolysis. It is suggested that the functionally important specialization of slow-twitch muscle is its low rate of energy use rather than high efficiency. Yes Yes
    The Journal of Physiology 10/2004; · 4.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to determine whether the net efficiency of mammalian muscles depends on muscle fibre type. Experiments were performed in vitro (35°C) using bundles of muscle fibres from the slow-twitch soleus and fast-twitch extensor digitorum longus (EDL) muscles of the mouse. The contraction protocol consisted of 10 brief contractions, with a cyclic length change in each contraction cycle. Work output and heat production were measured and enthalpy output (work + heat) was used as the index of energy expenditure. Initial efficiency was defined as the ratio of work output to enthalpy output during the first 1 s of activity. Net efficiency was defined as the ratio of the total work produced in all the contractions to the total, suprabasal enthalpy produced in response to the contraction series, i.e. net efficiency incorporates both initial and recovery metabolism. Initial efficiency was greater in soleus (30 ± 1%; n= 6) than EDL (23 ± 1%; n= 6) but there was no difference in net efficiency between the two muscles (12.6 ± 0.7% for soleus and 11.7 ± 0.5% for EDL). Therefore, more recovery heat was produced per unit of initial energy expenditure in soleus than EDL. The calculated efficiency of oxidative phosphorylation was lower in soleus than EDL. The difference in recovery metabolism between soleus and EDL is unlikely to be due to effects of changes in intracellular pH on the enthalpy change associated with PCr hydrolysis. It is suggested that the functionally important specialization of slow-twitch muscle is its low rate of energy use rather than high efficiency.
    The Journal of Physiology 09/2004; 559(2). DOI:10.1113/jphysiol.2004.069096 · 4.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Studies of cardiac muscle energetics have traditionally used contraction protocols with strain patterns that bear little resemblance to those observed in vivo. This study aimed to develop a realistic strain protocol, based on published in situ measurements of contracting papillary muscles, for use with isolated preparations. The protocol included the three phases observed in intact papillary muscles: an initial isometric phase followed by isovelocity shortening and re-lengthening phases. Realistic papillary muscle dynamics were simulated in vitro (27 degrees C) using preparations isolated from the left ventricle of adult male rats. The standard contraction protocol consisted of 40 twitches at a contraction rate of 2 Hz. Force, changes in muscle length and changes in muscle temperature were measured simultaneously. To quantify the energetic costs of contraction, work output and enthalpy output were determined, from which the maximum net mechanical efficiency could be calculated. The most notable result from these experiments was the constancy of enthalpy output per twitch, or energy cost, despite the various alterations made to the protocol. Changes in mechanical efficiency, therefore, generally reflected changes in work output per twitch. The variable that affected work output per twitch to the greatest extent was the amplitude of shortening, while changes in the duration of the initial isometric phase had little effect. Decreasing the duration of the shortening phase increased work output per twitch without altering enthalpy output per twitch. Increasing the contraction frequency from 2 to 3 Hz resulted in slight decreases in the work output per twitch and in efficiency. Using this realistic strain protocol, the maximum net mechanical efficiency of rat papillary muscles was approximately 15 %. The protocol was modified to incorporate an isometric relaxation period, thus allowing the model to simulate the main mechanical features of ventricular function.
    Journal of Experimental Biology 12/2001; 204(Pt 21):3765-77. · 3.00 Impact Factor