Article

Experimental muscle pain produces central modulation of proprioceptive signals arising from jaw muscle spindles.

Department of Oral and Craniofacial Biological Sciences, University of Maryland Baltimore, School of Dentistry, Baltimore, MD 21201, USA.
Pain (Impact Factor: 5.64). 06/2000; 86(1-2):151-62. DOI:10.1016/S0304-3959(00)00231-1
Source: PubMed

ABSTRACT The aim of the present study was to investigate the effects of intramuscular injection with hypertonic saline, a well-established experimental model for muscle pain, on central processing of proprioceptive input from jaw muscle spindle afferents. Fifty-seven cells were recorded from the medial edge of the subnucleus interpolaris (Vi) and the adjacent parvicellular reticular formation from 11 adult cats. These cells were characterized as central units receiving jaw muscle spindle input based on their responses to electrical stimulation of the masseter nerve, muscle palpation and jaw stretch. Forty-five cells, which were successfully tested with 5% hypertonic saline, were categorized as either dynamic-static (DS) (n=25) or static (S) (n=20) neurons based on their responses to different speeds and amplitudes of jaw movement. Seventy-six percent of the cells tested with an ipsilateral injection of hypertonic saline showed a significant modulation of mean firing rates (MFRs) during opening and/or holding phases. The most remarkable saline-induced change was a significant reduction of MFR during the hold phase in S units (100%, 18/18 modulated). Sixty-nine percent of the DS units (11/16 modulated) also showed significant changes in MFRs limited to the hold phase. However, in the DS neurons, the MFRs increased in seven units and decreased in four units. Finally, five DS neurons showed significant changes of MFRs during both opening and holding phases. Injections of isotonic saline into the ipsilateral masseter muscle had little effect, but hypertonic saline injections made into the contralateral masseter muscle produced similar results to ipsilateral injections with hypertonic saline. These results unequivocally demonstrate that intramuscular injection with an algesic substance, sufficient to produce muscle pain, produces significant changes in the proprioceptive properties of the jaw movement-related neurons. Potential mechanisms involved in saline-induced changes in the proprioceptive signals and functional implications of the changes are discussed.

0 0
 · 
0 Bookmarks
 · 
33 Views
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: In therapeutic settings, patients with shoulder pain often exhibit deficient coordinative abilities in their trunk and lower extremities. The aim of the study was to investigate 1) if there is a connection between shoulder pain and deficits in balance ability and postural stability, 2) if pain intensity is related to balance ability and postural stability, and 3) if there is a connection between body mass index (BMI) and balance ability and postural stability. In this case--control study, patients (n = 40) with pathological shoulder pain (> 4 months) were matched with a healthy controls (n = 40) and were compared with regard to their balance ability and postural stability. Outcome parameters were postural stability, balance ability and symmetry index which were measured using the S3-Check system. In addition, the influence of shoulder pain intensity and BMI on the outcome parameters was analysed. Patients with shoulder pain showed significantly worse results in measurements of postural stability right/left (p < 0.01) and front/back (p < 0.01) as well as balance ability right/left (p = 0.01) and front/back (p < 0.01) compared to healthy controls. There were no significant group differences with regard to symmetry index. However, there was a significant (p < 0.01) symmetry shift towards the affected side within the shoulder pain group. There was no correlation between pain intensity and measurements of balance ability or postural stability. Likewise, no correlation between BMI and deficiencies in balance ability and postural stability was established. Patients with pathological shoulder pain (> 4 months) have deficiencies in balance ability and postural stability; however the underlying mechanisms for this remain unclear. Neither pain intensity nor BMI influenced the outcome parameters. Patients with shoulder pain shift their weight to the affected side. Further research is needed to determine if balance training can improve rehabilitation results in patients with shoulder pathologies.
    BMC Musculoskeletal Disorders 10/2013; 14(1):282. · 1.88 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We wanted to explore the specific proprioceptive effect of cervical pain on sensorimotor control. Sensorimotor control comprises proprioceptive feedback, central integration and subsequent muscular response. Pain might be one cause of previously reported disturbances in joint kinematics, head on trunk orientation and postural control. However, the causal relationship between the impact of cervical pain on proprioception and thus on sensorimotor control has to be established. Eleven healthy subjects were examined in their ability to reproduce two different head on trunk targets, neutral head position (NHP) and 30° target position, with a 3D motion analyser before, directly after and 15 min after experimentally induced neck pain. Pain was induced by hypertonic saline infusion at C2/3 level in the splenius capitis muscle on one side (referred to as "injected side"). All subjects experienced temporary pain and the head repositioning error increased significantly during head repositioning to the 30° target to the injected side (p = 0.011). A post hoc analysis showed that pain interfered with proprioception to the injected side during acute pain (p < 0.001), but also when the pain had waned (p = 0.002). Accuracy decreased immediately after pain induction for the 30° target position to the side where pain was induced (3.3 → 5.3°, p = 0.033), but not to the contralateral side (4.9 → 4.1°, p = 0.657). There was no significant impact of pain on accuracy for NHP. A sensory mismatch appeared in some subjects, who experienced dizziness. Acute cervical pain distorts sensorimotor control with side-specific changes, but also has more complex effects that appear when pain has waned.
    Arbeitsphysiologie 06/2013; · 2.66 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Experimental pain induced in animals has shown that noxious stimulation of group III and IV afferents increases the firing of muscle spindles via a reflex excitation of fusimotor (gamma) motoneurones. Chronic muscle pain has been hypothesised to develop as a result of a vicious cycle involving this mechanism. In order to explore the effects of long-lasting muscle pain on the fusimotor system, single unit muscle spindle afferents were recorded from 15 subjects. Afferent activity was recorded from foot and ankle extensor muscles whilst infusing hypertonic saline into the tibilais anterior muscle of the ipsilateral leg, producing moderate-strong pain lasting for ~60 minutes. A change in fusimotor drive was inferred by observing changes in mean discharge rate of spontaneously active muscle spindle afferents. Homonymous and heteronymous muscles remained relaxed and showed no increase in activity, arguing against any fusimotor-driven increase in motor activity, and there was no net change in the firing of muscle spindle afferents. We conclude that long-lasting stimulation of group III and IV afferents fails to excite fusimotor neurones and increase muscle spindle discharge. Accordingly, the vicious cycle theory has no functional basis for the development of myalgia in human subjects.
    Experimental physiology 02/2013; · 3.17 Impact Factor