Biology of the adenomatous polyposis coli tumor supressor

Howard Hughes Medical Institute, Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
Journal of Clinical Oncology (Impact Factor: 18.43). 06/2000; 18(9):1967-79.
Source: PubMed


The adenomatous polyposis coli (APC) gene was first identified as the gene mutated in an inherited syndrome of colon cancer predisposition known as familial adenomatous polyposis coli (FAP). Mutation of APC is also found in 80% of all colorectal adenomas and carcinomas and is one of the earliest mutations in colon cancer progression. Similar to other tumor suppressor genes, both APC alleles are inactivated by mutation in colon tumors, resulting in the loss of full-length protein in tumor cells. The functional significance of altering APC is the dysregulation of several physiologic processes that govern colonic epithelial cell homeostasis, which include cell cycle progression, migration, differentiation, and apoptosis. Roles for APC in some of these processes are in large part attributable to its ability to regulate cytosolic levels of the signaling molecule beta-catenin and to affect the transcriptional profile in cells. This article summarizes numerous genetic, biochemical, and cell biologic studies on the mechanisms of APC-mediated tumor suppression. Mouse models of FAP, in which the APC gene has been genetically inactivated, have been particularly useful in testing therapeutic and chemopreventive strategies. These data have significant implications for colorectal cancer treatment approaches as well as for understanding other disease genes and cancers of other tissue types.

1 Follower
28 Reads
  • Source
    • "Moreover, heritable changes in the APC gene frequently lead to familial adenomatous polyposis (FAP). FAP is the most dominant inherited syndrome of CRC (88, 89) and Apcmin/+ mice show increased propensity for the development of adenomatous polyps after the loss of the wild type APC allele (88). Up to 80% of sporadic CRCs are known to be initiated by DNA damage of the genes involved in the APC signaling pathway (87). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Toll-like receptor (TLR) signaling has been implicated in the inflammatory responses in intestinal epithelial cells (IECs). Such inflammatory signals mediate complex interactions between commensal bacteria and TLRs and are required for IEC proliferation, immune response, repair, and homeostasis. The upregulation of certain TLRs in colorectal cancer (CRC) tissues suggests that TLRs may play an essential role in the prognosis of chronic and inflammatory diseases that ultimately culminate in CRC. Here, we provide a comprehensive review of the literature on the involvement of the TLR pathway in the initiation, progression, and metastasis of CRC, as well as inherited genetic variation and epigenetic regulation. The differential expression of TLRs in epithelial cells has also been discussed. In particular, we emphasize the physiological role of TLR4 in CRC development and pathogenesis, and propose novel and promising approaches for CRC therapeutics with the aid of TLR ligands.
    Frontiers in Immunology 07/2014; 5:334. DOI:10.3389/fimmu.2014.00334
  • Source
    • "Fewer than 10% of these cases will be in individuals who have an inherited predisposition to the disease, as is the case for familial adenomatous polyposis and hereditary nonpolyposis colon cancer (Goss et al., 2000). There are also other diseases that increased the colorectal cancer risk such as Crohn's diseases and ulcerative colitis. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Epithelial-to-mesenchymal transition (EMT) is a collection of events that allows the conversion of adherent epithelial cells, tightly bound to each other within an organized tissue, into independent fibroblastic cells possessing migratory properties and the ability to invade the extracellular matrix. EMT contributes to the complex architecture of the embryo by permitting the progression of embryogenesis from a simple single-cell layer epithelium to a complex three-dimensional organism composed of both epithelial and mesenchymal cells. However, in most tissues EMT is a developmentally restricted process and fully differentiated epithelia typically maintain their epithelial phenotype. Recently, elements of EMT, specially the loss of epithelial markers and the gain of mesenchymal markers, have been observed in pathological states, including epithelial cancers. Increasing evidence has confirmed its presence in human colon during colorectal carcinogenesis. In general, chronic inflammation is considered to be one of the causes of many human cancers including colorectal cancer(CRC). Accordingly, epidemiologic and clinical studies indicate that patients affected by ulcerative colitis and Crohn's disease, the two major forms of inflammatory bowel disease, have an increased risk of developing CRC. A large body of evidence supports roles for the SMAD/STAT3 signaling pathway, the NF-kB pathway, the Ras-mitogen- activated protein kinase/Snail/Slug and microRNAs in the development of colorectal cancers via epithelial-to- mesenchymal transition. Thus, EMT appears to be closely involved in the pathogenesis of colorectal cancer, and analysis refered to it can yield novel targets for therapy.
    Asian Pacific journal of cancer prevention: APJCP 05/2013; 14(5):2689-2698. DOI:10.7314/APJCP.2013.14.5.2689 · 2.51 Impact Factor
  • Source
    • "Consequently, other somatic events in APC gene such as intragenic mutations, interstitial deletion, mitotic recombination, and epigenetic silencing of the wild type allele resulting in APC function loss has been proposed as additional mechanisms of intestinal tumorigenesis [57], [58]. Furthermore, reports also suggest that the truncated protein from the mutated allele may exert a dominant negative effect on the full-length protein from the wild type allele of the APC gene resulting in a non-functional APC protein [16]. Currently, efforts are underway in our laboratory to understand frequency and characteristics of 56Fe radiation-induced LOH at the APC locus on mouse chromosome 18 in F1 AKRxC57BL/6 J-ApcMin/+ hybrid mice, commonly used for such studies [60]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Risk of colorectal cancer (CRC) after exposure to low linear energy transfer (low-LET) radiation such as γ-ray is highlighted by the studies in atom bomb survivors. On the contrary, CRC risk prediction after exposure to high-LET cosmic heavy ion radiation exposure is hindered due to scarcity of in vivo data. Therefore, intestinal tumor frequency, size, cluster, and grade were studied in APCMin/+ mice (n = 20 per group; 6 to 8 wks old; female) 100 to 110 days after exposure to 1.6 or 4 Gy of heavy ion 56Fe radiation (energy: 1000 MeV/nucleon) and results were compared to γ radiation doses of 2 or 5 Gy, which are equitoxic to 1.6 and 4 Gy 56Fe respectively. Due to relevance of lower doses to radiotherapy treatment fractions and space exploration, we followed 2 Gy γ and equitoxic 1.6 Gy 56Fe for comparative analysis of intestinal epithelial cell (IEC) proliferation, differentiation, and β-catenin signaling pathway alterations between the two radiation types using immunoblot, and immunohistochemistry. Relative to controls and γ-ray, intestinal tumor frequency and grade was significantly higher after 56Fe radiation. Additionally, tumor incidence per unit of radiation (per cGy) was also higher after 56Fe radiation relative to γ radiation. Staining for phospho-histone H3, indicative of IEC proliferation, was more and alcian blue staining, indicative of IEC differentiation, was less in 56Fe than γ irradiated samples. Activation of β-catenin was more in 56Fe-irradiated tumor-free and tumor-bearing areas of the intestinal tissues. When considered along with higher levels of cyclin D1, we infer that relative to γ radiation exposure to 56Fe radiation induced markedly reduced differentiation, and increased proliferative index in IEC resulting in increased intestinal tumors of larger size and grade due to preferentially greater activation of β-catenin and its downstream effectors.
    PLoS ONE 03/2013; 8(3): e59295(3). DOI:10.1371/journal.pone.0059295 · 3.23 Impact Factor
Show more