Effect of captopril on skeletal muscle angiogenic growth factor responses to exercise

Department of Medicine, University of California San Diego, La Jolla, California 92093-0623, USA.
Journal of Applied Physiology (Impact Factor: 3.06). 06/2000; 88(5):1690-7.
Source: PubMed


Acute exercise increases vascular endothelial growth factor (VEGF), transforming growth factor-beta(1) (TGF-beta(1)), and basic fibroblast growth factor (bFGF) mRNA levels in skeletal muscle, with the greatest increase in VEGF mRNA. VEGF functions via binding to the VEGF receptors Flk-1 and Flt-1. Captopril, an angiotensin-converting enzyme inhibitor, has been suggested to reduce the microvasculature in resting and exercising skeletal muscle. However, the molecular mechanisms responsible for this reduction have not been investigated. We hypothesized that this might occur via reduced VEGF, TGF-beta(1), bFGF, Flk-1, and Flt-1 gene expression at rest and after exercise. To investigate this, 10-wk-old female Wistar rats were placed into four groups (n = 6 each): 1) saline + rest; 2) saline + exercise; 3) 100 mg/kg ip captopril + rest; and 4) 100 mg/kg ip captopril + exercise. Exercise consisted of 1 h of running at 20 m/min on a 10 degrees incline. VEGF, TGF-beta(1), bFGF, Flk-1, and Flt-1 mRNA were analyzed from the left gastrocnemius by quantitative Northern blot. Exercise increased VEGF mRNA 4.8-fold, TGF-beta(1) mRNA 1.6-fold, and Flt-1 mRNA 1.7-fold but did not alter bFGF or Flk-1 mRNA measured 1 h after exercise. Captopril did not affect the rest or exercise levels of VEGF, TGF-beta(1), bFGF, and Flt-1 mRNA. Captopril did reduce Flk-1 mRNA 30-40%, independently of exercise. This is partially consistent with the suggestion that captopril may inhibit capillary growth.

1 Follower
5 Reads
    • "Differences in study design aside, this includes pronounced differences between the pharmacodynamics of the second-and first-generation ACE inhibitors lisinopril and captopril. For instance, short-and long-lived actions of lisinopril and captopril (Giles et al., 1989), respectively , likely will have added to the dissimilarity in application of captopril in the rat [20 min (Gavin 2000)] and lisinopril (3 days) in our human investigation. Lastly, the time point of measure, i.e., 1 vs 3 h after exercise, the selected transcripts, inter-species, and anatomical differences in the studied muscles may account for the discrepancy as well. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Skeletal muscle responds to endurance exercise with an improvement of biochemical pathways that support substrate supply and oxygen-dependent metabolism. This is reflected by enhanced expression of associated factors after exercise and is specifically modulated by tissue perfusion and oxygenation. We hypothesized that transcript expression of pro-angiogenic factors (VEGF, tenascin-C, Angpt1, Angpt1R) and oxygen metabolism (COX4I1, COX4I2, HIF-1α) in human muscle after an endurance stimulus depends on vasoconstriction, and would be modulated through angiotensin-converting enzyme inhibition by intake of lisinopril. Fourteen non-specifically trained, male Caucasians subjects, carried out a single bout of standardized one-legged bicycle exercise. Seven of the participants consumed lisinopril in the 3 days before exercise. Biopsies were collected pre- and 3 h post-exercise from the m. vastus lateralis. COX4I1 (P = 0.03), COX4I2 (P = 0.04) mRNA and HIF-1α (P = 0.05) mRNA and protein levels (P = 0.01) showed an exercise-induced increase in the group not consuming the ACE inhibitor. Conversely, there was a specific exercise-induced increase in VEGF transcript (P = 0.04) and protein levels (P = 0.03) and a trend for increased tenascin-c transcript levels (P = 0.09) for subjects consuming lisinopril. The observations indicate that exercise-induced expression of transcripts involved in angiogenesis and mitochondrial energy metabolism are to some extent regulated via a hypoxia-related ACE-dependent mechanism.
    Scandinavian Journal of Medicine and Science in Sports 09/2015; DOI:10.1111/sms.12572 · 2.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Thesis (Ph. D.)--Ohio University, 2002.
  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the vascular endothelial growth factor (VEGF) receptor [fms-like-tyrosine kinase (Flt-1 and fetal liver kinase-1 (Flk-1)] response to acute exercise. In female Wistar rats, the VEGF receptor messenger RNA (mRNA) response to a single acute exercise bout was examined using semi-quantitative Northern blot from the left gastrocnemius muscles at rest and post-exercise at 0, 1, 2, 4, 8, 16, 24 and 48 h. Exercise altered both Flt-1 and Flk-1 mRNA, with significant increases in Flt-1 mRNA at 1 and 24 h. However, post-hoc analysis was unable to discern the time point where a significant increase in Flk-1 mRNA occurred. To investigate the regulation of Flt-1 mRNA by exercise we examined if nitric oxide synthase (NOS) inhibition alters the Flt-1 mRNA response. Eight groups [Condition: Rest or Exercise; Drug: Saline, 30 mg kg(-1)N(omega)-nitro-L-arginine methyl ester (L-NAME), 300 mg kg(-1) L-NAME or 300 mg kg(-1) D-NAME] were used to determine the effect of NOS inhibition on the Flt-1 mRNA response to exercise. L-NAME, a known NOS inhibitor, attenuated the exercise-induced increase in Flt-1 mRNA by approximately 50%. These findings suggest that: (1) exercise alters Flt-1 and Flk-1 gene expression; and (2) NO is important in the regulation of the Flt-1 gene response to exercise.
    Acta Physiologica Scandinavica 08/2002; 175(3):201-9. DOI:10.1046/j.1365-201X.2002.00987.x · 2.55 Impact Factor
Show more