Additions of enantiopure alpha-sulfinyl carbanions to (S)-N-sulfinimines: Asymmetric synthesis of beta-amino sulfoxides and beta-amino alcohols

Universidad Autónoma de Madrid, Madrid, Madrid, Spain
The Journal of Organic Chemistry (Impact Factor: 4.72). 06/2000; 65(10):2856-62.
Source: PubMed


The addition of the lithium anions derived from (R)- and (S)-methyl and -ethyl p-tolyl sulfoxides to (S)-N-benzylidene-p-toluenesulfinamide provides an easy access route to enantiomerically pure beta-(N-sulfinyl)amino sulfoxides. Stereoselectivity can be achieved when the configurations at the sulfur atoms of the two reagents are opposite (matched pair), thus resulting in only one diastereoisomer, even for the case in which two new chiral centers are created. The N-sulfinyl group primarily controls the configuration of the carbon bonded to the nitrogen, whereas the configuration of the alpha-sulfinyl carbanion seems to be responsible for the level of asymmetric induction, as well as for the configuration of the new stereogenic C-SO carbon in the reactions with ethyl p-tolyl sulfoxides. An efficient method for transforming the obtained beta-(N-sulfinyl)amino sulfoxides into optically pure beta-amino alcohols, based on the stereoselective non-oxidative Pummerer reaction, is also reported.

11 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: The mixed-metal complex formed from n-butylsodium, n-butyllithium, and a chiral amino ether has been studied by NMR spectroscopy. Three different mixed-metal amides were used as chiral bases for the deprotonation of cyclohexene oxide. The selectivity and initial rate of reaction were compared for sodium-amido ethers, lithium-amido ethers, and mixtures of sodium and lithiumamido ethers in diethyl ether and tetrahydrofuran, respectively. The mixed sodium/lithium amides are more reactive than the single sodium and lithium amides, whereas the stereoselectivities are higher when lithium amides are used. The alkali-metal/gamma-amido ethers exhibit both higher initial reaction rates and stereoselectivities than their beta-amido ether analogues. NMR spectroscopic studies of mixtures of n-butylsodium (nBuNa), n-butyllithium (nBuLi), and the gamma-amino ethers in diethyl ether show the exclusive formation of dimeric mixed-metal amides. In diethyl ether, the lithium atom of the mixed-metal amide is internally coordinated and the sodium atom is exposed to solvent; however, in tetrahydrofuran, both metals are internally coordinated.
    Chemistry 08/2005; 11(16):4785-92. DOI:10.1002/chem.200500121 · 5.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sulfoxides are nowadays recognised as powerful chiral auxiliaries that may participate in a wide range of asymmetric reactions. Their high configurational stability, the existence of several efficient methods allowing the access to both configurations as well as their synthetic versatility are characteristic features offering a tremendous potential to develop new applications. Significant recent advances leading to high asymmetric inductions in carbon-carbon and carbon-oxygen bond forming reactions, and applications of homochiral sulfoxides to atroposelective synthesis and asymmetric catalysis are discussed. New uses of sulfoxides in the design of chiroptical switches are also shown.
    Chemical Communications 11/2009; 41(41):6129-44. DOI:10.1039/b908043k · 6.83 Impact Factor