Spatial distribution of spermine/spermidine content and K(+)-current rectification in frog retinal glial (Müller) cells.

CMBN, Department of Biochemistry, School of Medicine, Universidad Central del Caribe, Bayamon, Puerto Rico.
Glia (Impact Factor: 5.07). 08/2000; 31(1):84-90. DOI: 10.1002/(SICI)1098-1136(200007)31:13.0.CO;2-7
Source: PubMed

ABSTRACT Previous studies in retinal glial (Müller) cells have suggested that (1) the dominant membrane currents are mediated by K(+) inward-rectifier (Kir) channels (Newman and Reichenbach, Trends Neurosci 19:307-312, 1996), and (2) rectification of these Kir channels is due largely to a block of outward currents by endogenous polyamines such as spermine/spermidine (SPM/SPD) (Lopatin et al., Nature 372:366-369, 1994). In frog Müller cells, the degree of rectification of Kir-mediated currents is significantly higher in the endfoot than in the somatic membrane (Skatchkov et al., Glia 27:171-181, 1999). This article shows that in these cells there is a topographical correlation between the local cytoplasmic SPM/SPD immunoreactivity and the ratio of inward to outward K(+) currents through the surrounding membrane area. Throughout the retina, Müller cell endfeet display a high SPM/SPD immunolabel (assessed by densitometry) and a large inward rectification of K(+) currents, as measured by the ratio of inward to outward current produced by step changes in [K(+)](o). In the retinal periphery, Müller cell somata are characterized by roughly one-half of the SPM/SPD immunoreactivity and K(+)-current rectification as the corresponding endfeet. In the retinal center, Müller cell somata are virtually devoid of both SPM/SPD immunolabel and K(+)-current inward rectification. Comparing one region of the retina with another, we find an exponential correlation between the local K(+) rectification and the local SPM/SPD content. This finding suggests that the degree of inward rectification in a given membrane area is determined by the local cytoplasmic polyamine concentration.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although Kir4.1 channels are the major inwardly rectifying channels in glial cells and are widely accepted to support K+- and glutamate-uptake in the nervous system, the properties of Kir4.1 channels during vital changes of K+ and polyamines remain poorly understood. Therefore, the present study examined the voltage-dependence of K+ conductance with varying physiological and pathophysiological external [K+] and intrapipette spermine ([SP]) concentrations in Müller glial cells and in tsA201 cells expressing recombinant Kir4.1 channels. Two different types of [SP] block were characterized: "fast" and "slow." Fast block was steeply voltage-dependent, with only a low sensitivity to spermine and strong dependence on extracellular potassium concentration, [K+]o. Slow block had a strong voltage sensitivity that begins closer to resting membrane potential and was essentially [K+]o-independent, but with a higher spermine- and [K+]i-sensitivity. Using a modified Woodhull model and fitting i/V curves from whole cell recordings, we have calculated free [SP](in) in Müller glial cells as 0.81 +/- 0.24 mM. This is much higher than has been estimated previously in neurons. Biphasic block properties underlie a significantly varying extent of rectification with [K+] and [SP]. While confirming similar properties of glial Kir and recombinant Kir4.1, the results also suggest mechanisms underlying K+ buffering in glial cells: When [K+]o is rapidly increased, as would occur during neuronal excitation, "fast block" would be relieved, promoting potassium influx to glial cells. Increase in [K+]in would then lead to relief of "slow block," further promoting K+-influx.
    Glia 06/2008; 56(7):775-90. · 5.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Spermine (SPM) and spermidine, endogenous polyamines with the ability to modulate various ion channels and receptors in the brain, exert neuroprotective, antidepressant, antioxidant, and other effects in vivo such as increasing longevity. These polyamines are preferably accumulated in astrocytes, and we hypothesized that SPM increases glial intercellular communication by interacting with glial gap junctions. The results obtained in situ, using Lucifer yellow propagation in the astrocytic syncitium of 21-25-day-old rat CA1 hippocampal slices, showed reduced coupling when astrocytes were dialyzed with standard intracellular solutions without SPM. However, there was a robust increase in the spreading of Lucifer yellow through gap junctions to neighboring astrocytes when the cells were patched with intracellular solutions containing 1 mM SPM, a physiological concentration in glia. Lucifer yellow propagation was inhibited by gap junction blockers. Our findings show that the glial syncitium propagates SPM through gap junctions and further indicate a new role of polyamines in the regulation of the astroglial network under both normal and pathological conditions.
    Neuroreport 10/2012; · 1.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is known that secondary transporters, which utilize transmembrane ionic gradients to drive their substrates up a concentration gradient, can reverse the uptake and instead release their substrates. Unfortunately, the Michaelis-Menten kinetic scheme, which is popular in transporter studies, does not include transporter reversal, and it completely neglects the possibility of equilibrium between the substrate concentrations on both sides of the membrane. We have developed a complex two-substrate kinetic model that includes transport reversal. This model allows us to construct analytical formulas allowing the calculation of a "heteroexchange" and "transacceleration" using standard Michaelis coefficients for respective substrates. This approach can help to understand how glial and other cells accumulate substrates without synthesis and are able to release such substrates and gliotransmitters.
    Journal of Biophysics 01/2013; 2013:683256.


Available from
May 28, 2014