Article

Association of SYT-SSX Fusion Types with Proliferative Activity and Prognosis in Synovial Sarcoma

Department of Pathology, Nagoya City University Medical School, Nagoya, Japan.
Modern Pathology (Impact Factor: 6.36). 06/2000; 13(5):482-8. DOI: 10.1038/modpathol.3880083
Source: PubMed

ABSTRACT The t(X;18)(p11.2;q11.2) translocation commonly found in synovial sarcoma (SS) results in the fusion of the SYT gene on chromosome 18 to either of two closely related genes, SSX1 and SSX2, on chromosome X. It has been suggested that patients who have SS bearing SYT-SSX1 fusion have worse prognosis than those bearing SYT-SSX2 fusion. However, little is known about the biologic basis or the relationship with the histopathologic risk factors in regard to the different fusion types. We analyzed 19 cases of SS with no metastasis at diagnosis. These tumors were classified by reverse transcription-polymerase chain reaction to SYT-SSX1 and SYT-SSX2 types. The expression of Ki-67, p27, p53, and bcl-2 and various clinicopathologic parameters including mitotic rate were compared between the two fusion types. The SYT-SSX1 type fusion was associated with high Ki-67 expression (P = .011) and high mitotic rate (P = .070). No significant differences were found between the two types as to the expression of p27, p53, and bcl-2 and other clinicopathologic parameters. The survival analysis showed that SYT-SSX1-type fusion, high Ki-67 expression, and high mitotic rate correlated with shorter metastasis-free survival. These data suggested that SYT-SSX fusion type is associated with tumor cell proliferative activity and prognosis of patients who have SS.

0 Followers
 · 
78 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Polycomb group (PcG) complexes regulate cellular identity through epigenetic programming of chromatin. Here, we show that SSX2, a germline-specific protein ectopically expressed in melanoma and other types of human cancers, is a chromatin-associated protein that antagonizes BMI1 and EZH2 PcG body formation and derepresses PcG target genes. SSX2 further negatively regulates the level of the PcG-associated histone mark H3K27me3 in melanoma cells, and there is a clear inverse correlation between SSX2/3 expression and H3K27me3 in spermatogenesis. However, SSX2 does not affect the overall composition and stability of PcG complexes, and there is no direct concordance between SSX2 and BMI1/H3K27me3 presence at regulated genes. This suggests that SSX2 antagonizes PcG function through an indirect mechanism, such as modulation of chromatin structure. SSX2 binds double-stranded DNA in a sequence non-specific manner in agreement with the observed widespread association with chromatin. Our results implicate SSX2 in regulation of chromatin structure and function.
    Nucleic Acids Research 09/2014; DOI:10.1093/nar/gku852 · 8.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Synovial sarcoma (SS) is a malignant mesenchymal neoplasm with variable epithelial differentiation, with a propensity to occur in young adults and which can arise at almost any site. It is generally viewed and treated as a high-grade sarcoma. As one of the first sarcomas to be defined by the presence of a specific chromosomal translocation leading to the production of the SS18-SSX fusion oncogene, it is perhaps the archetypal “translocation-associated sarcoma,” and its translocation remains unique to this tumor type. Synovial sarcoma has a variety of morphologic patterns, but its chief forms are the classic biphasic pattern, of glandular or solid epithelial structures with monomorphic spindle cells and the monophasic pattern, of fascicles of spindle cells with only immunohistochemical or ultrastructural evidence of epithelial differentiation. However, there is significant morphologic heterogeneity and overlap with a variety of other neoplasms, which can cause diagnostic challenge, particularly as the immunoprofile is varied, SS18-SSX is not detected in 100% of SSs, and they may occur at unusual sites. Correct diagnosis is clinically important, due to the relative chemosensitivity of SS in relation to other sarcomas, for prognostication and because of the potential for treatment with specific targeted therapies in the near future. We review SS, with emphasis on the diagnostic spectrum, recent immunohistochemical and genetic findings, and the differential diagnosis.
    Annals of Diagnostic Pathology 10/2014; 18(6). DOI:10.1016/j.anndiagpath.2014.09.002 · 1.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: SSX cancer/testis antigens are frequently expressed in melanoma tumors and represent attractive targets for immunotherapy, but their role in melanoma tumorigenesis has remained elusive. Here, we investigated the cellular effects of SSX2 expression. In A375 melanoma cells, SSX2 expression resulted in an increased DNA content and enlargement of cell nuclei, suggestive of replication aberrations. The cells further displayed signs of DNA damage and genomic instability, associated with p53-mediated G1 cell cycle arrest and a late apoptotic response. These results suggest a model wherein SSX2-mediated replication stress translates into mitotic defects and genomic instability. Arrest of cell growth and induction of DNA double-strand breaks was also observed in MCF7 breast cancer cells in response to SSX2 expression. Additionally, MCF7 cells with ectopic SSX2 expression demonstrated typical signs of senescence (i.e. an irregular and enlarged cell shape, enhanced β-galactosidase activity and DNA double-strand breaks). Since replication defects, DNA damage and senescence are interconnected and well-documented effects of oncogene expression, we tested the oncogenic potential of SSX2. Importantly, knockdown of SSX2 expression in melanoma cell lines demonstrated that SSX2 supports the growth of melanoma cells. Our results reveal two important phenotypes of ectopic SSX2 expression that may drive/support tumorigenesis: First, immediate induction of genomic instability, and second, long-term support of tumor cell growth. Further studies will determine the molecular context required for coping with the cellular stress induced by SSX2, which may support the oncogenic effects of this protein.
    Molecular Oncology 10/2014; 9(2). DOI:10.1016/j.molonc.2014.09.001 · 5.94 Impact Factor