Article

Episodic movement disorders as channelopathies.

Movement Disorders (Impact Factor: 5.63). 06/2000; 15(3):429-33.
Source: PubMed
0 Followers
 · 
49 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the past 2 years, mutations in the PRRT2 gene have been identified in patients and families with a variety of early-onset paroxysmal disorders, including various paroxysmal dyskinesias, benign familial infantile seizures, hemiplegic migraine, and episodic ataxia. In this chapter, we describe the wide clinical spectrum associated with PRRT2 mutations and present the current hypotheses on the underlying pathophysiology. Through its interaction with the presynaptic plasma membrane protein SNAP25, the PRRT2 protein may play a role in synaptic regulation in the cortex and basal ganglia. PRRT2 mutations likely have a loss-of-function effect and result in synaptic deregulation and neuronal hyperexcitability. The molecular bases underlying phenotypic variability are still unclear. Elucidating the molecular pathways linking the genetic defect to its clinical expression will improve treatment of these disorders.
    Progress in brain research 01/2014; 213C:141-158. DOI:10.1016/B978-0-444-63326-2.00008-9
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BackgroundMutations in proline-rich transmembrane protein 2 (PRRT2) are a cause of paroxysmal kinesigenic dyskinesia (PKD). In this study, we investigated the PRRT2 gene mutation in a Chinese Han family with PKD and study the pathogenesis of the mutation with PRRT2 gene.MethodsPeripheral venous blood was taken from the family members. Sanger sequencing was used for novel mutation sequencing. For the pathogenesis with the novel mutation was analyzed by bioinformatics, real-time PCR, subcellular localization and Western blot.ResultsThe Sanger sequencing showed a novel mutation, c.186-187delGC, a deletion mutation, in exon 2 of the PRRT2 gene, the frameshift mutation generated a truncated protein that was stably expressed in transfected Human embryonic kidney (HEK) 293 cells. A subcellular localization assay in COS-7 cells with GFP-tagged protein showed nuclear localization for the mutant protein while the wild-type protein was localized in membranes. Co-transfection of HEK293 cells with wild-type and mutant expression plasmids cells did not influence mRNA or protein expression from the wild-type plasmid.ConclusionsOur findings demonstrated that the c.186-187delGC mutation resulted in a truncated protein from the PRRT2 gene to involve in PKD pathogenesis with haploinsufficiency. The results extend the mutation spectrum of the PRRT2 gene and provide a new example for studying the pathogenesis of the mutated PRRT2 gene.
    BMC Neurology 07/2014; 14. DOI:10.1186/1471-2377-14-146
  • [Show abstract] [Hide abstract]
    ABSTRACT: Episodic ataxia type 2 (EA2) is an autosomal dominant disorder associated with attacks of ataxia that are typically precipitated by stress, ethanol, caffeine or exercise. EA2 is caused by loss-of-function mutations in the CACNA1A gene, which encodes the α1A subunit of the CaV2.1 voltage-gated Ca(2+) channel. To better understand the pathomechanisms of this disorder in vivo, we created the first genetic animal model of EA2 by engineering a mouse line carrying the EA2-causing c.4486T>G (p.F1406C) missense mutation in the orthologous mouse Cacna1a gene. Mice homozygous for the mutated allele exhibit a ~70% reduction in CaV2.1 current density in Purkinje cells, though surprisingly do not exhibit an overt motor phenotype. Mice hemizygous for the knockin allele (EA2/- mice) did exhibit motor dysfunction measurable by rotarod and pole test. Studies using Cre-flox conditional genetics explored the role of cerebellar Purkinje cells or cerebellar granule cells in the poor motor performance of EA2/- mice and demonstrate that manipulation of either cell type alone did not cause poor motor performance. Thus, it is possible that subtle dysfunction arising from multiple cell types is necessary for the expression of certain ataxia syndromes.
    Experimental Neurology 08/2014; 261. DOI:10.1016/j.expneurol.2014.08.001