Article

Snarepins Are Functionally Resistant to Disruption by Nsf and αSNAP

Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
The Journal of Cell Biology (Impact Factor: 9.69). 06/2000; 149(5):1063-72.
Source: PubMed

ABSTRACT SNARE (SNAP [soluble NSF (N-ethylmaleimide-sensitive fusion protein) attachment protein] receptor) proteins are required for many fusion processes, and recent studies of isolated SNARE proteins reveal that they are inherently capable of fusing lipid bilayers. Cis-SNARE complexes (formed when vesicle SNAREs [v-SNAREs] and target membrane SNAREs [t-SNAREs] combine in the same membrane) are disrupted by the action of the abundant cytoplasmic ATPase NSF, which is necessary to maintain a supply of uncombined v- and t-SNAREs for fusion in cells. Fusion is mediated by these same SNARE proteins, forming trans-SNARE complexes between membranes. This raises an important question: why doesn't NSF disrupt these SNARE complexes as well, preventing fusion from occurring at all? Here, we report several lines of evidence that demonstrate that SNAREpins (trans-SNARE complexes) are in fact functionally resistant to NSF, and they become so at the moment they form and commit to fusion. This elegant design allows fusion to proceed locally in the face of an overall environment that massively favors SNARE disruption.

0 Bookmarks
 · 
66 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vesicle transport is a central process to ensure protein and lipid distribution in eukaryotic cells. The current knowledge on the molecular components and mechanisms of this process is majorly based on studies in Saccharomyces cerevisiae and Arabidopsis thaliana, which revealed 240 different proteinaceous factors either experimentally proven or predicted to be involved in vesicle transport. In here, we performed an orthologue search using two different algorithms to identify the components of the secretory pathway in yeast and 14 plant genomes by using the 'core-set' of 240 factors as bait. We identified 4021 orthologues and (co-)orthologues in the discussed plant species accounting for components of COP-II, COP-I, Clathrin Coated Vesicles, Retromers and ESCRTs, Rab GTPases, Tethering factors and SNAREs. In plants, we observed a significantly higher number of (co-)orthologues than yeast, while only 8 tethering factors from yeast seem to be absent in the analyzed plant genomes. To link the identified (co-)orthologues to vesicle transport, the domain architecture of the proteins from yeast, genetic model plant A. thaliana and agriculturally relevant crop Solanum lycopersicum has been inspected. For the orthologous groups containing (co-)orthologues from yeast, A. thaliana and S. lycopersicum, we observed the same domain architecture for 79% (416/527) of the (co-)orthologues, which documents a very high conservation of this process. Further, publically available tissue-specific expression profiles for a subset of (co-)orthologues found in A. thaliana and S. lycopersicum suggest that some (co-)orthologues are involved in tissue-specific functions. Inspection of localization of the (co-)orthologues based on available proteome data or localization predictions lead to the assignment of plastid- as well as mitochondrial localized (co-)orthologues of vesicle transport factors and the relevance of this is discussed.
    PLoS ONE 05/2014; 9(5):e97745. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cells contain small membrane-enclosed vesicles which transport many kinds of cargo between the compartments of the cell. The result is a choreographed program of secretory, biosynthetic and endocytic protein traffic that serves the cell's internal physiologic needs.
    Angewandte Chemie International Edition 08/2014; 53(47). · 11.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Secretory and endolysosomal fusion events are driven by SNAREs and cofactors, including Sec17 (α-SNAP), Sec18 (NSF), and Sec1/Munc18 (SM) proteins. SMs are essential for fusion in vivo, but the basis of this requirement is enigmatic. We now report that, in addition to their established roles as fusion accelerators, SM proteins Sly1 and Vps33 directly shield SNARE complexes from Sec17- and Sec18-mediated disassembly. In vivo, wild-type Sly1 and Vps33 function are required to withstand overproduction of Sec17. In vitro, Sly1 and Vps33 impede SNARE complex disassembly by Sec18 and ATP. Unexpectedly, Sec17 directly promotes selective loading of Sly1 and Vps33 onto cognate SNARE complexes. A large thermodynamic barrier limits SM binding, implying that significant conformational rearrangements are involved. In a working model, Sec17 and SMs accelerate fusion mediated by cognate SNARE complexes and protect them from NSF-mediated disassembly, while mis-assembled or non-cognate SNARE complexes are eliminated through kinetic proofreading by Sec18.
    eLife Sciences 05/2014; · 8.52 Impact Factor

Full-text (4 Sources)

Download
63 Downloads
Available from
May 29, 2014