Paxillin localizes to the lymphocyte microtubule organizing center and associates with the microtubule cytoskeleton

Servicio de Inmunologia, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain.
Journal of Biological Chemistry (Impact Factor: 4.6). 09/2000; 275(34):26436-40. DOI: 10.1074/jbc.M003970200
Source: PubMed

ABSTRACT Paxillin is a focal adhesion-associated protein that functions as a multi-domain adapter protein, binding several structural and signaling molecules. alpha-Tubulin was identified as an interacting protein in a two-hybrid screen using the paxillin C-terminal LIM domain as a bait. In vitro binding assays with glutathione S-transferase-paxillin demonstrated an interaction of alpha-tubulin with the C terminus of paxillin. Another member of the tubulin family, gamma-tubulin, bound to both the N and the C terminus of paxillin. The interaction between paxillin and both alpha- and gamma-tubulin in vivo was confirmed by co-immunoprecipitation from human T lymphoblasts. Immunofluorescence studies revealed that, in adherent T cells, paxillin localized to sites of cell-matrix interaction as well as to a large perinuclear region. Confocal microscopy revealed that this region corresponds to the lymphocyte microtubule organizing center, where paxillin colocalizes with alpha- and gamma-tubulin. The localization of paxillin to this area was observed in cells in suspension as well as during adhesion to integrin ligands. These data constitute the first characterization of the interaction of paxillin with the microtubule cytoskeleton, and suggest that paxillin, in addition to its well established role at focal adhesions, could also be associated with the lymphocyte microtubule network.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: LIM domain proteins contain contiguous double-zinc finger domains and play important roles in cytoskeletal re-organisation and organ development in multi-cellular eukaryotes. Here, we report the characterization of four genes encoding LIM proteins in the rice blast fungus Magnaporthe oryzae. Targeted gene replacement of either the paxillin-encoding gene, PAX1, or LRG1 resulted in a significant reduction in hyphal growth and loss of pathogenicity, while deletion of RGA1 caused defects in conidiogenesis and appressorium development. A fourth LIM domain gene, LDP1, was not required for infection-associated development by M. oryzae. Live cell imaging revealed that Lrg1-GFP and Rga1-GFP both localize to septal pores, while Pax1-GFP is present in the cytoplasm. To explore the function of individual LIM domains, we carried out systematic deletion of each LIM domain, which revealed the importance of the Lrg1-LIM2 and Lrg1-RhoGAP domains for Lrg1 function and overlapping functions of the three LIM domains of Pax1. Interestingly, deletion of either PAX1 or LRG1 led to decreased sensitivity to cell wall-perturbing agents, such as Congo Red and SDS (sodium dodecyl sulfate). qRT-PCR analysis demonstrated the importance of both Lrg1 and Pax1 to regulation of genes associated with cell wall biogenesis. When considered together, our results indicate that LIM domain proteins are key regulators of infection-associated morphogenesis by the rice blast fungus.
    PLoS ONE 02/2014; 9(2):e88246. DOI:10.1371/journal.pone.0088246 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Regulated polyubiquitination is a key step for controlling protein degradation and maintaining proper balance between the proliferation of normal and uncontrolled cells. Addition of ubiquitin to the proteins by E3 ubiquitin ligases targets them for degradation by the 26S proteosome machinery. Discrepancies in ubiquitination and/or proteosome degradation might lead to multiple genetic disorders in humans. It is reported that CUL1 and BRCA1 ubiquitin ligases localize on centrosome region and regulate the centrosome duplication cycle for genomic stability. In the current study, we predicted the possible interaction of E3 ubiquitin ligase CUL4A complex with γ-tubulin, a centrosome-specific protein, using bioinformatic protein-protein docking analysis. We also confirmed their interaction by performing co-immunoprecipitation studies using endogenous CUL4A/B and stable cell lines that overexpress Flag-CUL4A or Flag-CUL4B. We additionally noted that the γ-tubulin was polyubiquitinated by CUL4A or 4B immune complex indicating that CUL4A or CUL4B may regulate the stability of γ-tubulin. Furthermore, the inhibition of proteosomal degradation pathway using MG132 or LLNV drugs resulted in accumulation and co-localization of CUL4A with γ-tubulin in the centrosome region. Overall, our observation has identified γ-tubulin as a novel target for E3 ubiquitin ligase CUL4 complex, and might lead to the establishment of a unique mechanism for controlling centrosome stability.
    Molecular and Cellular Biochemistry 12/2014; 401(1-2). DOI:10.1007/s11010-014-2309-7 · 2.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The recruitment of leukocytes to sites of inflammation is crucial for a functional immune response. In the present work, we explore the role of mitochondria in lymphocyte adhesion, polarity and migration. We show that during adhesion to the activated endothelium under physiological flow conditions, lymphocyte mitochondria redistribute to the adhesion zone together with the microtubule-organizing center (MTOC) in an integrin-dependent manner. Mitochondrial redistribution and efficient lymphocyte adhesion to the endothelium requires Miro-1 function, an adapter molecule that couples mitochondria to microtubules. Our data demonstrate that Miro-1 associates with the dynein complex. Moreover, mitochondria accumulate around the MTOC in response to the chemokine CXCL12/SDF-1α; this redistribution is regulated by Miro-1. CXCL12-dependent cell polarization and migration is reduced in Miro-1-interfered cells, due to impaired myosin II activation at the cell uropod, and diminished actin polymerization. These data point to a key role of Miro-1 in the control of lymphocyte adhesion and migration through the regulation of mitochondrial redistribution.
    Molecular and Cellular Biology 02/2014; DOI:10.1128/MCB.01177-13 · 5.04 Impact Factor