Enhanced genome annotation using structural profiles in the program 3D-PSSM

Biomolecular Modelling Laboratory, Imperial Cancer Research Fund, 44 Lincoln's Inn Fields, London, WC2A 3PX, England.
Journal of Molecular Biology (Impact Factor: 3.96). 07/2000; 299(2):499-520. DOI: 10.1006/jmbi.2000.3741
Source: PubMed

ABSTRACT A method (three-dimensional position-specific scoring matrix, 3D-PSSM) to recognise remote protein sequence homologues is described. The method combines the power of multiple sequence profiles with knowledge of protein structure to provide enhanced recognition and thus functional assignment of newly sequenced genomes. The method uses structural alignments of homologous proteins of similar three-dimensional structure in the structural classification of proteins (SCOP) database to obtain a structural equivalence of residues. These equivalences are used to extend multiply aligned sequences obtained by standard sequence searches. The resulting large superfamily-based multiple alignment is converted into a PSSM. Combined with secondary structure matching and solvation potentials, 3D-PSSM can recognise structural and functional relationships beyond state-of-the-art sequence methods. In a cross-validated benchmark on 136 homologous relationships unambiguously undetectable by position-specific iterated basic local alignment search tool (PSI-Blast), 3D-PSSM can confidently assign 18 %. The method was applied to the remaining unassigned regions of the Mycoplasma genitalium genome and an additional 13 regions were assigned with 95 % confidence. 3D-PSSM is available to the community as a web server:

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: One of the oldest known gene clusters that are involved in biological oxidation processes is the sox operon. This operon is present in different microbial species. In the present study an attempt has been made to analyze the probable structural role of SoxT protein from Pseudaminobacter salicylatoxidans. This protein has been predicted to be a permease-like protein. A comparative model of the protein has been made and analyzed. The possible membrane spanning region of the protein has been detected by structural bioinformatics approach. The inducer of the sulfur oxidation process has been predicted. And thereby the plausible mechanism of the transport of the sulfur anion inside the bacterial cell has been elucidated. Since this is the first study regarding the structural aspect of the protein this study may shed light on the theory of the yet unknown molecular mechanism of the sulfur oxidation process by sox operon.
    Gene 03/2013; DOI:10.1016/j.gene.2013.02.038 · 2.08 Impact Factor
  • Source
    Protein Engineering, 02/2012; , ISBN: 978-953-51-0037-9
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: SUMMARY: Trichomonas vaginalis is a protozoan parasite causing trichomonosis, a sexually transmitted infection in humans. This parasite has numerous proteases, most of which are cysteine proteases that appear to be involved in adherence and cytotoxicity of host cells. In this report we identify and characterize a putative subtilisin-like serine protease (SUB1). The sub1 gene encodes a 101-kDa protein. In silico analyses predict signal and pro-peptides at the N-terminus, and a transmembrane helix at the carboxy-terminal region. The sub1 gene was found as single copy by Southern analysis, albeit additional serine protease related genes are annotated in the T. vaginalis genome. The expression of sub1 could only be detected by RT-PCR and Ribonuclease Protection Assays, suggesting a low abundant mRNA. The sub1 gene transcription start site was correctly assigned by RPA. The transcript abundance was found to be modulated by the availability of iron in the growth medium. Antibodies raised to a specific SUB1 peptide recognized a single protein band (approximately 82 kDa) in Western blots, possibly representing the mature form of the protein. Immunofluorescence showed SUB1 on the trichomonad surface, and in dispersed vesicles throughout the cytoplasm. A bioinformatic analysis of genes annotated as serine proteases in the T. vaginalis genome is also presented. To our knowledge this is the first putative serine protease experimentally described for T. vaginalis.
    Parasitology 09/2010; 137(11):1621-35. DOI:10.1017/S003118201000051X · 2.35 Impact Factor