Article

Early melting of supercoiled DNA topoisomers observed by TGGE.

P.J. Safarik University, Faculty of Sciences, Department of Biochemistry, Moyzesova 11, 041 54 Koice, Slovakia and Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 043 53 Koice, Slovakia.
Nucleic Acids Research (Impact Factor: 8.81). 06/2000; 28(11):E51.
Source: PubMed

ABSTRACT We have used temperature gradient gel electrophoresis (TGGE) to measure the progress of local denaturation in closed circular topoisomer DNA as a function of temperature and superhelicity (sigma). We describe the versatility of this method as a tool for detecting various conformational modifications of plasmid DNAs. The early melting temperature of a structural transition for any topoisomer is dependent on the value of superhelicity. Supercoiled topo-isomers represent a system of molecules that is sensitive to changes in temperature. We show that the topoisomer with the highest absolute value of superhelicity melts earlier than topoisomers with lower values. Thermal sensitivity of highly supercoiled plasmids could play a biologically important role in regulation of replication and expression in cells under thermal stress. The estimated melting temperature for plasmids with sigma < -0.05 is very significant because these temperatures for early melting are below physiological temperatures.

0 Followers
 · 
73 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Arginine chromatography was used to fully separate supercoiled and open circular plasmid DNA (pDNA) isoforms. The results show that the arginine matrix promotes multiple interactions with pDNA, including not only electrostatic and hydrophobic but also biorecognition of nucleotide bases by the arginine ligand. The strong interactions occurring with DNA backbone provide stability, conducting to high effectiveness of arginine support to bind pDNA at low ionic strength. The specific interaction of arginine with sc pDNA could be due to the ability of arginine matrix to be involved in complex interactions that are partly dependent on the conformation of the DNA molecule.
    Analytical Biochemistry 04/2008; 374(2):432-4. DOI:10.1016/j.ab.2007.11.005 · 2.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Repetitive sequences in DNA molecules, some of which are palindromic, tend to form stable cruciforms. These are frequently located in promoter regions of a specific operon and origin of replication. Temperature gradient gel electrophoresis can be used to distinguish among various supercoiled DNA topoisomers and to ascertain whether or not the cruciform motif has been extruded. In the current study, this technique is implemented for the first time to address the role of temperature in cruciform extrusion from plasmids.
    Analytical Biochemistry 09/2005; 343(2):308-12. DOI:10.1016/j.ab.2005.05.017 · 2.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The effect of temperature-induced changes in secondary and tertiary structures of plasmid DNA (pDNA) and on the retention behaviour of open circular (oc) and supercoiled (sc) isoforms in histidine-agarose chromatography was investigated by Circular dichroism (CD) spectroscopy. Chromatographic experiments performed with three plasmids (2.7, 6.1 and 7.4kbp) and with a decreasing ammonium sulphate gradient (2.3--2.0M) showed that the retention of sc pDNA increased as temperature decreased from 24 to 5 degrees C. Such behaviour was attributed to the temperature-induced removal of negative superhelical turns in sc pDNA which is accompanied by a decrease in the number of dissociated base pairs responsible for interaction with the histidine ligands. CD spectroscopy showed that temperature has an important effect on plasmid secondary structure if adenine-rich inserts are present in the plasmid structure. Chromatographic experiments also suggested that base composition could also be responsible for the induction of specific interactions with histidine ligands.
    Archives of Biochemistry and Biophysics 12/2007; 467(2):154-62. DOI:10.1016/j.abb.2007.08.027 · 3.04 Impact Factor