The potential physiological significance of milk-borne hormonally active substances for the neonate.

Department of Pediatrics, University of Arizona, College of Medicine, Tucson 85724, USA.
Journal of Mammary Gland Biology and Neoplasia (Impact Factor: 7.52). 08/1996; 1(3):317-23. DOI: 10.1007/BF02018084
Source: PubMed

ABSTRACT This article reviews the presence and potential physiological significance of hormones and hormonally active substances (including growth factors) in human milk. Human milk has been found to contain several nonpeptide hormones and many peptide hormones and growth factors. In contrast to human breast milk, infant formulae lack some hormonally active peptides. There is little data concerning the effects of these agents on human neonates. Studies in immature experimental animals showing effects of orogastically administered hormones are summarized. The problems of supplementation of infant formula are discussed. Since hormones are present in the milk as a "cocktail" of potentially agonistic and antagonistic substances, one question is whether supplementation with a single agent would disturb this balance.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Pituitary adenylate cyclase activating polypeptide (PACAP) is a pleiotropic and multifunctional neuropeptide widely distributed throughout the body. It is involved in the regulation of various physiological and pathophysiological processes, such as reproduction, thermoregulation, motor activity, brain development, neuronal survival, inflammation and pain. Since little is known about its distribution in humans, our aim was to examine PACAP-38 in human plasma. Furthermore, based on the presence of vasoactive intestinal peptide, structurally the closest to PACAP, in milk and PACAP and its receptors in the mammary gland, our aim was to study PACAP-38 in human milk. The presence of PACAP-38 was determined by mass spectrometry in plasma samples from healthy male and female volunteers (age: 20-40), as well as in plasma and milk samples from lactating women (age: 20-35). PACAP concentration was measured with a specific and sensitive RIA. Our results revealed that PACAP-38 is present in human plasma, its concentration is relatively stable in healthy volunteers and it is not significantly altered by gender, age, food intake or hormonal cycle in females. However, PACAP-38 plasma levels significantly increased in lactating women having 1-6 month-old babies. Moreover, this study is the first which provides evidence for the presence of PACAP-38 in the human milk with levels 5-20-fold greater in the milk whey than in the respective plasma samples. We found PACAP-38 in human plasma and its increase during the first 6 months of the lactation period. A prominent, nearly 10-fold higher concentration of this peptide was detected in human milk. Based on the literature, several important actions of milk-derived PACAP-38 can be suggested such as mammary gland proliferation, nutrient transfer as well as regulation of growth/differentiation of certain tissues of the neonates. The novelty of the present descriptive data provides a basis for further investigations on the mechanism of PACAP-38 secretion in human milk and its functional significance.
    European Journal of Endocrinology 02/2009; 160(4):561-5. · 3.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Childhood obesity is on the rise and is a major risk factor for type 2 diabetes later in life. Recent evidence indicates that abnormalities that increase risk for diabetes may be initiated early in infancy. Since the offspring of women with diabetes have an increased long-term risk for obesity and type 2 diabetes, the impact of maternal metabolic abnormalities on early nutrition and infant metabolic trajectories is of considerable interest. Human breast milk, the preferred food during infancy, contains not only nutrients but also an array of bioactive substances including metabolic hormones. Nonetheless, only a few studies have reported concentrations of metabolic hormones in human milk specifically from women with metabolic abnormalities. We aim to investigate the impact of maternal metabolic abnormalities in pregnancy on human milk hormones and subsequently on infant development over the first year of life. The objective of this report is to present the methodology and design of this study. The current investigation is a prospective study conducted within ongoing cohort studies of women and their offspring. Pregnant women attending outpatient obstetrics clinics in Toronto, Canada were recruited. Between April 2009 and July 2010, a total of 216 pregnant women underwent a baseline oral glucose tolerance test and provided medical and lifestyle history. Follow-up visits and telephone interviews are conducted and expected to be completed in October 2011. Upon delivery, infant birth anthropometry measurements and human breast milk samples are collected. At 3 and 12 months postpartum, mothers and infants are invited for follow-up assessments. Interim telephone interviews are conducted during the first year of offspring life to characterize infant feeding and supplementation behaviors. An improved understanding of the link between maternal metabolic abnormalities in pregnancy and early infant nutrition may assist in the development of optimal prevention and intervention strategies and in the protection of nutritionally vulnerable offspring who are at risk for obesity and diabetes later in life.
    BMC Public Health 10/2010; 10:590. · 2.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Milk contains a variety of proteins and peptides that possess biological activity. Growth factors, such as growth hormone, insulin-like, epidermal and nerve growth factors are important milk components which may regulate growth and differentiation in various neonatal tissues and also those of the mammary gland itself. We have recently shown that pituitary adenylate cyclase-activating polypeptide (PACAP), an important neuropeptide with neurotrophic actions, is present in the human milk in much higher concentration than in the plasma of lactating women. Investigation of growth factors in the milk of domestic animals is of utmost importance for their nutritional values and agricultural significance. Therefore, the aim of the present study was to determine the presence and concentration of PACAP in the plasma and milk of three ruminant animal species. Furthermore, the presence of PACAP and its specific PAC1 receptor were investigated in the mammary glands. Radioimmunoassay measurements revealed that PACAP was present in the plasma and the milk of the sheep, goat and the cow in a similar concentration to that measured previously in humans. PACAP38-like immunoreactivity (PACAP38-LI) was 5-20-fold higher in the milk than in the plasma samples of the respective animals, a similar serum/milk ratio was found in all the three species. The levels did not show significant changes within the examined 3-month-period of lactation after delivery. Similar PACAP38-LI was measured in the homogenates of the sheep mammary gland samples taken 7 and 30 days after delivery. PAC1 receptor expression was detected in these udder biopsies by fluorescent immunohistochemistry suggesting that this peptide might have an effect on the mammary glands themselves. These data show that PACAP is present in the milk of various ruminant domestic animal species at high concentrations, the physiological implications of which awaits further investigation.
    General and Comparative Endocrinology 12/2010; 172(1):115-9. · 2.82 Impact Factor