Article

Activation of anterior paralimbic structures during guilt-related script-driven imagery.

Department of Psychology, Tufts University, Medford, Massachusetts 02155, USA.
Biological Psychiatry (Impact Factor: 9.47). 08/2000; 48(1):43-50. DOI: 10.1016/S0006-3223(00)00251-1
Source: PubMed

ABSTRACT Several recent neuroimaging studies have examined the neuroanatomical correlates of normal emotional states, such as happiness, sadness, fear, anger, anxiety, and disgust; however, no previous study has examined the emotional state of guilt.
In the current study, we used positron emission tomography and the script-driven imagery paradigm to study regional cerebral blood flow (rCBF) during the transient emotional experience of guilt in eight healthy male participants. In the Guilt condition, participants recalled and imagined participating in a personal event involving the most guilt they had ever experienced. In the Neutral condition, participants recalled and imagined participating in an emotionally neutral personal event.
In the Guilt versus Neutral comparison, rCBF increases occurred in anterior paralimbic regions of the brain: bilateral anterior temporal poles, anterior cingulate gyrus, and left anterior insular cortex/inferior frontal gyrus.
These results, along with those of previous studies, are consistent with the notion that anterior paralimbic regions of the brain mediate negative emotional states in healthy individuals.

1 Bookmark
 · 
64 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neuroimaging studies of language have typically focused on either production or comprehension of single speech utterances such as syllables, words, or sentences. In this study we used a new approach to functional MRI acquisition and analysis to characterize the neural responses during production and comprehension of complex real-life speech. First, using a time-warp based intrasubject correlation method, we identified all areas that are reliably activated in the brains of speakers telling a 15-min-long narrative. Next, we identified areas that are reliably activated in the brains of listeners as they comprehended that same narrative. This allowed us to identify networks of brain regions specific to production and comprehension, as well as those that are shared between the two processes. The results indicate that production of a real-life narrative is not localized to the left hemisphere but recruits an extensive bilateral network, which overlaps extensively with the comprehension system. Moreover, by directly comparing the neural activity time courses during production and comprehension of the same narrative we were able to identify not only the spatial overlap of activity but also areas in which the neural activity is coupled across the speaker's and listener's brains during production and comprehension of the same narrative. We demonstrate widespread bilateral coupling between production- and comprehension-related processing within both linguistic and nonlinguistic areas, exposing the surprising extent of shared processes across the two systems.
    Proceedings of the National Academy of Sciences 09/2014; · 9.81 Impact Factor
  • Source
    Psychological Inquiry 08/2014; 25(3-4):394-413. · 4.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Voxel-based morphometry (VBM) has demonstrated structural brain changes between patients with Major Depressive Disorder (MDD) and healthy individuals. The initial response to antidepressants is crucial to predict prognosis in the treatment of MDD. The aim of the present study was to investigate gray matter abnormalities predicting antidepressant responsiveness and the relationships between volumetric differences and clinical/cognitive traits in MDD patients. Methods Fifty MDD patients who received 8 week period antidepressant treatment and 29 healthy controls participated in this study. VBM was applied to assess structural changes between MDD groups and control group. Neuropsychological tests were conducted on all participants. Results Both treatment responsive and non-responsive patients showed a significant volume reduction of the left insular, but only non-responsive patients had decreased volume in the right superior frontal gyrus compared to healthy controls. The comparison between treatment responsive and non-responsive patient groups demonstrated a significant difference in gray matter volume in the lingual gyrus. The larger volume of lingual gryus predicted early antidepressant response, which was attributable to better performance in neuropsychological tests. Limitation This study included a small sample size and the patients received various antidepressants and benzodiazepines. Conclusion Our findings suggest that the patients who responded poorly to antidepressants were morphologically and cognitively impaired, whereas the treatment responsive patients showed less structural changes and relatively preserved cognitive functions. The lingual gyrus may be a possible candidate region to predict antidepressant responsiveness and maintained cognition in MDD.
    Journal of Affective Disorders 12/2014; 169:179–187. · 3.71 Impact Factor

Full-text (2 Sources)

Download
30 Downloads
Available from
Jun 5, 2014