VEGF regulates cell behavior during vasculogenesis.

Department of Cell Biology and the Cardiovascular Developmental Biology Center, Medical University of South Carolina, Charleston 29425, USA.
Developmental Biology (Impact Factor: 3.64). 09/2000; 224(2):178-88. DOI: 10.1006/dbio.2000.9744
Source: PubMed

ABSTRACT Prominent among molecules that control neovascular processes is vascular endothelial growth factor (VEGF). The VEGF ligands comprise a family of well-studied mitogens/permeability factors that bind cell surface receptor tyrosine kinases. Targets include VEGF receptor-1/Flt1 and VEGF receptor-2/Flk1. Mice lacking genes for VEGF ligand or VEGF receptor-2 die early in gestation, making it difficult to determine the precise nature of underlying endothelial cellular behavior(s). To examine the effect(s) of VEGF signaling on cell behavior in detail, we conducted loss-of-function studies using avian embryos. Injection of soluble VEGFR-1 results in malformed vascular networks and the absence of large vessels. In the most severe cases embryos exhibited vascular atresia. Closely associated with the altered phenotype was a clear endothelial cell response-a marked decrease in cell protrusive activity. Further, we demonstrate that VEGF gain of function strikingly increased cell protrusive activity. Together, our data show that VEGF/VEGF receptor signaling regulates endothelial cell protrusive activity, a key determinant of blood vessel morphogenesis. We propose that VEGF functions as an instructive molecule during de novo blood vessel morphogenesis.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Multiscale problems are ubiquitous and fundamental in all biological phenomena that emerge naturally from the complex interaction of processes which occur at various levels. A number of both discrete and continuous mathematical models and methods have been developed to address such an intricate network of organization. One of the most suitable individual cell-based model for this purpose is the well-known cellular Potts model (CPM). The CPM is a discrete, lattice-based, flexible technique that is able to accurately identify and describe the phenomenological mechanisms which are responsible for innumerable biological (and nonbiological) phenomena. In this work, we first give a brief overview of its biophysical basis and discuss its main limitations. We then propose some innovative extensions, focusing on ways of integrating the basic mesoscopic CPM with accurate continuous models of microscopic dynamics of individuals. The aim is to create a multiscale hybrid framework that is able to deal with the typical multilevel organization of biological development, where the behavior of the simulated individuals is realistically driven by their internal state. Our CPM extensions are then tested with sample applications that show a qualitative and quantitative agreement with experimental data. Finally, we conclude by discussing further possible developments of the method.
    SIAM Journal on Multiscale Modeling and Simulation 01/2012; 10(2). · 1.80 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endothelial colony-forming cells (ECFCs) are obtained from the culture of human peripheral blood mononuclear cell (hPBMNC) fractions and are characterised by high proliferative and pro-vasculogenic potential, which makes them of great interest for cell therapy. Here, we describe the detection of protease-activated receptor (PAR) 1 and 2 amongst the surface proteins expressed in ECFCs. Both receptors are functionally coupled to extracellular signal-regulated kinase (ERK) 1 and 2, which become activated and phosphorylated in response to selective PAR1- or PAR2-activating peptides. Specific stimulation of PAR1, but not PAR2, significantly inhibits capillary-like tube formation by ECFCs in vitro, suggesting that tubulogenesis is negatively regulated by proteases able to stimulate PAR1 (e.g. thrombin). The activation of ERKs is not involved in the regulation of tubulogenesis in vitro, as suggested by use of the MEK inhibitor PD98059 and by the fact that PAR2 stimulation activates ERKs without affecting capillary tube formation. Both qPCR and immunoblotting showed a significant downregulation of vascular endothelial growth factor 2 (VEGFR2) in response to PAR1 stimulation. Moreover, the addition of VEGF (50-100 ng/ml) but not basic Fibroblast Growth Factor (FGF) (25-100 ng/ml) rescued tube formation by ECFCs treated with PAR1-activating peptide. Therefore, we propose that reduction of VEGF responsiveness resulting from down-regulation of VEGFR2 is underlying the anti-tubulogenic effect of PAR1 activation. Although the role of PAR2 remains elusive, this study sheds new light on the regulation of the vasculogenic activity of ECFCs and suggests a potential link between adult vasculogenesis and the coagulation cascade.
    PLoS ONE 10/2014; 9(10):e109375. · 3.53 Impact Factor
  • Source
    Biophysical Journal 01/2013; 104(2):151-. · 3.83 Impact Factor


Available from
May 31, 2014