Cellular distribution of prostanoid EP receptors mRNA in the rat gastrointestinal tract

Department of Biochemistry and Molecular Biology, Merck Frosst Center for Therapeutic Research, P.O. Box 1005, Dorval-Pointe-Claire, H9R 4P8, Québec, Canada.
Prostaglandins & other lipid mediators (Impact Factor: 2.38). 08/2000; 62(2):145-56. DOI: 10.1016/S0090-6980(00)00058-7
Source: PubMed


The inhibition of PGE(2) synthesis resulting from sustained NSAIDs therapy has been linked to gastrointestinal irritations and ulceration. The multiple physiological effects of PGE(2) in the gut are mediated through the activation of four receptors termed EP(1-4). The aim of the study was to determine the precise distribution of the four prostaglandin E(2) receptors in the rat stomach, small intestine, and colon. We used non-radioactive in situ hybridization techniques on paraffin-embedded tissue. Mucous cells of the stomach and goblet cells of the small intestine and colon were found to express mRNA for all four EP subtypes. A positive hybridization signal for EP(1), EP(3), and EP(4) was detected in the parietal cells of the stomach whereas the chief cells expressed low levels of EP(1) and EP(3). The EP(1) and EP(3) receptor mRNA could also be detected in the muscularis mucosa, longitudinal muscle and enteric ganglias of the stomach and small intestine. However, close examination of the enteric ganglias indicated that most of the positive labeling was localized to the glial cells, although some neurons did express EP(3). In conclusion, we have detailed the distribution of prostanoid EP receptors in the gut at the cellular level, giving new insights to the role of prostaglandins in gastrointestinal functions.

5 Reads
  • Source
    • "Enhanced smooth muscle contractions, therefore, may be induced by EP1 via changes in intracellular Ca2+ concentrations of smooth muscle cells. While different subtypes of PGE2 receptors are present in varying concentrations throughout the gastrointestinal tract, EP1 have been detected in the muscularis mucosa, enteric glial cells, and smooth muscle layers of the small intestine.15-17 Therefore, the increased muscular contractions by lubiprostone could be a result of effects on muscle or glial cells. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Lubiprostone, a chloride channel type 2 (ClC-2) activator, was thought to treat constipation by enhancing intestinal secretion. It has been associated with increased intestinal transit and delayed gastric emptying. Structurally similar to prostones with up to 54% prostaglandin E2 activity on prostaglandin E receptor 1 (EP1), lubiprostone may also exert EP1-mediated procontractile effect on intestinal smooth muscles. We investigated lubiprostone's effects on intestinal smooth muscle contractions and pyloric sphincter tone. Isolated murine small intestinal (longitudinal and circular) and pyloric tissues were mounted in organ baths with modified Krebs solution for isometric recording. Basal muscle tension and response to electrical field stimulation (EFS; 2 ms pulses/10 V/6 Hz/30 sec train) were measured with lubiprostone (10(-10)-10(-5) M) ± EP1 antagonist. Significance was established using Student t test and P < 0.05. Lubiprostone had no effect on the basal tension or EFS-induced contractions of longitudinal muscles. With circular muscles, lubiprostone caused a dose-dependent increase in EFS-induced contractions (2.11 ± 0.88 to 4.43 ± 1.38 N/g, P = 0.020) that was inhibited by pretreatment with EP1 antagonist (1.69 ± 0.70 vs. 4.43 ± 1.38 N/g, P = 0.030). Lubiprostone had no effect on circular muscle basal tension, but it induced a dose-dependent increase in pyloric basal tone (1.07 ± 0.01 to 1.97 ± 0.86 fold increase, P < 0.05) that was inhibited by EP1 antagonist. In mice, lubiprostone caused a dose-dependent and EP1-mediated increase in contractility of circular but not longitudinal small intestinal smooth muscles, and in basal tone of the pylorus. These findings suggest another mechanism for lubiprostone's observed clinical effects on gastrointestinal motility.
    Journal of neurogastroenterology and motility 07/2013; 19(3):312-8. DOI:10.5056/jnm.2013.19.3.312 · 2.30 Impact Factor
  • Source
    • "In the last decade, compelling evidence has been accumulated that PGs regulate the activity of myenteric neurons and the contractile functions of digestive smooth muscle (Northey et al., 2000; Manning et al., 2002). For these reasons, the expression of COX isoforms in the gut neuromuscular compartment is currently a field of active investigation. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Since the discovery of two cyclooxygenase isoforms (COX-1, COX-2), efforts have been made to characterize the roles played by these enzymes in the regulation of physiological functions, as well as to explore their involvement in the pathophysiology of inflammatory disorders. In the digestive tract, the majority of evidence has been obtained at mucosal level, where both isoforms regulate various functions, and contribute to the development of inflammatory and neoplastic disorders. The role of COX isoforms in the gut neuromuscular compartment, where their expression has been detected in different species, is still unclear. However, the characterization of actions exerted by COX-derived prostanoids on gut motility has been under investigation for many years, and it is becoming increasingly appreciated that these mediators subserve complex regulatory patterns of COX on digestive motility. More recently, several studies have strengthened the concept that both COX-1 and COX-2 are involved in the modulation of gastrointestinal neuromuscular activity under normal conditions, and that changes in their regulatory activities occur in the presence of various digestive disorders, including inflammatory bowel diseases and postoperative ileus. Despite a large body of preclinical evidence, studies aimed at translating these findings into clinically relevant applications are needed, in an attempt to identify novel therapeutic approaches for treatment of gut disorders associated with motility alterations. This review illustrates and discusses current knowledge of the roles played by COX pathways in the regulation of gastrointestinal neuromuscular functions, both under normal conditions and in the presence of gut disorders.
    Pharmacology [?] Therapeutics 10/2009; 125(1):62-78. DOI:10.1016/j.pharmthera.2009.09.007 · 9.72 Impact Factor
  • Source
    • "EP1 and EP3 primarily contribute to inflammatory responses, whereas EP4 promotes both cell survival and growth by activating antiapoptotic and proliferative cellular signaling pathways (Fujino et al., 2003; Hase et al., 2003; Hoshino et al., 2003; Goulet et al., 2004; Joseph et al., 2005). Moreover, EP4 is constitutively expressed in the colonic epithelium and further induced during IBD, along with PGE 2 (Wiercinska- Drapalo et al., 1999; Northey et al., 2000; Takafuji et al., 2000; Nitta et al., 2002). Recently, EP4 antagonists have been reported to impair epithelial proliferation in the colon (Kabashima et al., 2002). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Inflammatory bowel disease (IBD) is often triggered and/or exacerbated by nonsteroidal anti-inflammatory drugs (NSAIDs). Among various prostanoids affected by NSAIDs, prostaglandin E2 (PGE2), in particular, seems to play critical roles in IBD via the EP4 receptor, one of the four PGE2 receptor subtypes (EP1-4). An EP4 agonist, [[3-[[(1R,2S,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxy-4-[3-(methoxymethyl)phenyl]-1-butenyl]-5-oxocyclopentyl]thio]propyl]thio]-acetic acid, C22H30O6S2 (ONO-AE1-329), for example, when topically applied, has been reported to ameliorate typical colitis symptoms by suppressing the production of cytotoxic cytokines in the dextran sodium sulfate (DSS)-induced colitis model. EP4 agonists are also known, however, for their ability to protect epithelial cells from apoptosis in vitro, which may contribute to the protection of mucosal barrier functions. To investigate this potential application, we have tested another EP4-selective agonist in the DSS-indomethacin mouse colitis model. 7-[2-(3-Hydroxy-4-phenyl-but-1-enyl)-6-oxo-piperidin-1-yl]-heptanoic acid methyl ester, C23H33NO4 (AGN205203), an analog from the 8-azapiperidinone series of EP4 agonists, is metabolically and chemically more stable than the ONO agonist, because of its lack of oxidizable sulfur atoms in the alpha-chain and of 11-OH group, a potential source of beta-elimination reaction. Treatment of mice subcutaneously with AGN205203 at 3 mg/kg/day minimized colitis symptoms, such as weight loss, diarrhea, and colonic bleeding. Further histological examination of colons revealed healthy surface columnar epithelial cells free of erosion and ulceration compared with those without the drug treatment. At cellular level, the drug treatment decreased colon epithelial apoptosis, prevented goblet cell depletion, and promoted epithelial regeneration. AGN205203 may be unique among known EP4 agonists for its metabolic and chemical stability, and it is amenable to systemic applications for the prevention and recovery of IBD.
    Journal of Pharmacology and Experimental Therapeutics 02/2007; 320(1):22-8. DOI:10.1124/jpet.106.111146 · 3.97 Impact Factor
Show more