Mitochondrial DNA evolution and population history of the Tenerife skink Chalcides viridanus

School of Biological & Earth Sciences, Liverpool John Moores University, UK.
Molecular Ecology (Impact Factor: 5.84). 09/2000; 9(8):1061-7. DOI: 10.1046/j.1365-294x.2000.00962.x
Source: PubMed

ABSTRACT Recent studies of island lizards have suggested that historical vicariance as a result of volcanism may have played an important role in shaping patterns of within-island genetic diversity. The skink, Chalcides viridanus, shows variation in morphology within the volcanic island of Tenerife. Two mitochondrial DNA (mtDNA) fragments (from the 12S and 16S rRNA regions) were sequenced in individuals from 17 sites to evaluate the relationship between current phylogeography and the geological history of the island. Three main clades were detected. The two most basal clades were restricted to areas representing the ancient precursor islands of Teno and Anaga in the northwest and northeast of Tenerife, respectively. The third clade showed a widespread geographical distribution and provided evidence of a recent rapid expansion after a bottleneck. Within-island cladogenesis appears to have taken place during a recent period of volcanic activity and long after the ancient islands had been united by the eruptions that led to the formation of the Canadas edifice. Evidence of similar biogeographical histories are found in other species in the Canary archipelago, supporting the volcanism scenario as a potentially widespread cause of within-island differentiation in reptiles.


Available from: Jose Pestano, May 28, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phylogenetic analysis using up to 1325 base pairs of mitochondrial DNA from 179 specimens and 30 species of Chalcides, Sphenops, Eumeces, Scincopus and Scincus indicates that Sphenops arose twice independently within Chalcides. It is consequently synonymized with that genus. Chalcides in this broader sense originated in Morocco, diversifying into four main clades about 10 Ma, after which some of its lineages dispersed widely to cover an area 40 times as large. Two separate lineages invaded the Canary Islands and at least five main lineages colonized southern Europe. At least five more spread across northern Africa, one extending into southwest Asia. Elongate bodies with reduced limbs have evolved at least four times in Chalcides, mesic 'grass-swimmers' being produced in one case and extensive adaptation to life in loose desert sand in two others. In clade, Chalcides striatus colonized SW Europe from NW Africa 2.6 Ma and C. chalcides mainland Italy 1.4 Ma, both invasions being across water, while C. c. vittatus reached Sardinia more recently, perhaps anthropogenically, and C. guentheri spread 1200km further east to Israel. C. minutus is a composite, with individuals from the type locality forming a long independent lineage and the remaining ones investigated being most closely related to C. mertensi. In the Northern clade, C. boulengeri and C. sepsoides spread east through sandy habitats north of the Sahara about 5 Ma, the latter reaching Egypt. C. bedriagai invaded Spain around the same time, perhaps during the Messinian period when the Mediterranean was dry, and shows considerable diversification. Although it is currently recognized as one species, the C. ocellatus clade exhibits as much phylogenetic depth as the other main clades of Chalcides, having at least six main lineages. These have independently invaded Malta and Sardinia from Tunisia and also southwest Arabia C. o. humilis appears to have spread over 4000 km through the Sahel, south of the Sahara quite recently, perhaps in the Pleistocene. In the Western clade of Chalcides, C. delislei appears to have dispersed in a similar way. There were also two invasions of the Canary Islands: one around 5 Ma by C. simonyi, and the other about 7 Ma by the ancestor of C. viridanus+C. sexlineatus. C. montanus was believed to be related to C. lanzai of the Northern clade, but in the mtDNA tree it is placed within C. polylepis of the Western clade, although this may possibly be an artifact of introgression. The Eumeces schneideri group, Scincopus and Scincus form a clade separate from Chalcides. Within this clade, the geographically disjunct E. schneideri group is paraphyletic. One of its members, E. algeriensis is the sister taxon to Scincopus, and Scincus may also be related to these taxa. The phylogeny suggests Scincopus entered desert conditions in Africa, up to 9.6 Ma and the same may have been true of Scincus up to 11.7 Ma. Scincus appears to have diversified and spread into Arabia around 6 Ma. Dates of origin and divergence of these skinks, desert Chalcides and other squamates agree with recent geological evidence that the Sahara is at least 5-7 My old. The subspecies Chalcides viridanus coeruleopunctatus is upgraded to the species level as C. coeruleopunctatus stat nov., on the basis of its large genetic divergence from C. v. viridanus.
    Molecular Phylogenetics and Evolution 04/2008; 46(3):1071-94. DOI:10.1016/j.ympev.2007.11.018 · 4.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The phylogeography of the lacertid lizard Gallotia atlantica from the small volcanic island of Lanzarote (Canary Islands) was analysed based on 1075 bp of mitochondrial DNA (mtDNA) sequence (partial cytochrome b and ND2) for 157 individuals from 27 sites (including three sites from neighbouring islets). Levels of sequence divergence were generally low, with the most distant haplotypes separated by only 14 mutational steps. MtDNA divergence appears to coincide with formation of the middle Pleistocene lowland that united formerly separate ancient islands to form the current island of Lanzarote, allowing rejection of a two-island model of phylogeographical structure. There was evidence of large-scale population expansion after island unification, consistent with the colonization of new areas. A nested clade phylogeographical analysis (NCPA) revealed significant phylogeographical structuring. Two-step and higher-level clades each had disjunct distributions, being found to the east and west of a common area with a north-south orientation that extends between coasts in the centre-east of the island (El Jable). Other clades were almost entirely restricted to the El Jable region alone. Bayesian Markov chain Monte Carlo analyses were used to separate ongoing gene flow from historical associations. These supported the NCPA by indicating recent (75,000-150,000 years ago) east-west vicariance across the El Jable region. Lava flows covered El Jable and other parts of the central lowland at this time and likely led to population extinctions and temporary dispersal barriers, although present-day evidence suggests some populations would have survived in small refugia. Expansion of the latter appears to explain the presence of a clade located between the eastern and western components of the disjunct clades. Direct relationships between mtDNA lineages and morphology were not found, although one of two morphological forms on the island has a disjunct distribution that is broadly concordant with east-west components of the phylogeographical pattern. This work demonstrates how recent volcanic activity can cause population fragmentation and thus shape genetic diversity on microgeographical scales.
    Molecular Ecology 03/2008; 17(3):854-66. DOI:10.1111/j.1365-294X.2007.03575.x · 5.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several processes have been described that could explain geographical variation and speciation within small islands, including fragmentation of populations through volcanic eruptions. Massive landslides, or debris avalanches, could cause similar effects. Here we analyse the potential impact of the 0.8 million-year-ago (Ma) Güimar valley debris avalanche on the phylogeography of the lizard Gallotia galloti on the Canary Island of Tenerife. Distributions of mitochondrial DNA lineages (based on cytochrome b sequences) were analysed on a 60-km southeastern coast transect centred on this area. Three main clades were detected, which can be divided into northern (one clade) and southern (two clades) groups that introgress across the valley. Maximum-likelihood estimates of migration rates (scaled for mutation rate) revealed highly asymmetric patterns, indicating that long-term gene flow into this region from both the northern and the southern populations greatly exceeded that in the opposite directions, consistent with recolonization of the area. The ancestral Tenerife node on the G. galloti tree is estimated at 0.80 Ma, matching closely with the geological estimate for the debris avalanche. Morphological variation (body dimensions and scalation) was also analysed and indicated a stepped cline in female scalation across the valley, although the patterns for male scalation and male and female body dimensions were not as clear. Together these findings provide support for the hypothesis that the debris avalanche has shaped the phylogeography of G. galloti and may even have been a primary cause of the within-island cladogenesis through population fragmentation and isolation. Current estimates of timing of island unification mean that the original hypothesis that within-island diversity is explained by the secondary contact of populations from the two ancient precursor islands of Teno and Anaga is less plausible for this and some other Tenerife species. Large-scale landslides have occurred on many volcanic islands, and so may have been instrumental in shaping within-island diversities.
    Molecular Ecology 11/2006; 15(12):3631-40. DOI:10.1111/j.1365-294X.2006.03048.x · 5.84 Impact Factor