Article

Mitochondrial DNA evolution and population history of the Tenerife skink Chalcides viridanus.

School of Biological & Earth Sciences, Liverpool John Moores University, UK.
Molecular Ecology (Impact Factor: 6.28). 09/2000; 9(8):1061-7. DOI: 10.1046/j.1365-294x.2000.00962.x
Source: PubMed

ABSTRACT Recent studies of island lizards have suggested that historical vicariance as a result of volcanism may have played an important role in shaping patterns of within-island genetic diversity. The skink, Chalcides viridanus, shows variation in morphology within the volcanic island of Tenerife. Two mitochondrial DNA (mtDNA) fragments (from the 12S and 16S rRNA regions) were sequenced in individuals from 17 sites to evaluate the relationship between current phylogeography and the geological history of the island. Three main clades were detected. The two most basal clades were restricted to areas representing the ancient precursor islands of Teno and Anaga in the northwest and northeast of Tenerife, respectively. The third clade showed a widespread geographical distribution and provided evidence of a recent rapid expansion after a bottleneck. Within-island cladogenesis appears to have taken place during a recent period of volcanic activity and long after the ancient islands had been united by the eruptions that led to the formation of the Canadas edifice. Evidence of similar biogeographical histories are found in other species in the Canary archipelago, supporting the volcanism scenario as a potentially widespread cause of within-island differentiation in reptiles.

0 Bookmarks
 · 
53 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Geological processes and ecological adaptation are major drivers of diversification on oceanic islands. Although diversification in these islands is often interpreted as resulting from dispersal or island hopping rather than vicariance, this may not be the case in islands with complex geological histories. The island of Tenerife, in the Canary Islands, emerged in the late Miocene as 3 precursor islands that were subsequently connected and reisolated by volcanic cycles. The spider Dysdera verneaui is endemic to the island of Tenerife, where it is widely distributed throughout most island habitats, providing an excellent model to investigate the role of physical barriers and ecological adaptation in shaping within-island diversity. Here, we present evidence that the phylogeographic patterns of this species trace back to the independent emergence of the protoislands. Molecular markers (mitochondrial genes cox1, 16S, and nad1 and the nuclear genes ITS-2 and 28S) analyzed from 100 specimens (including a thorough sampling of D. verneaui populations and additional outgroups) identify 2 distinct evolutionary lineages that correspond to 2 precursor islands, each with diagnostic genital characters indicative of separate species status. Episodic introgression events between these 2 main evolutionary lineages explain the observed incongruence between mitochondrial and nuclear markers, probably as a result of the homogenization of their ITS-2 sequence types. The most widespread lineage exhibits a complex population structure, which is compatible with either secondary contact, following connection of deeply divergent lineages, or alternatively, a back colonization from 1 precursor island to another.
    The Journal of heredity 03/2013; · 2.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Delimitation of species is an important and controversial area within evolutionary biology. Many species boundaries have been defined using morphological data. New genetic approaches now offer more objective evaluation and assessment of the reliability of morphological variation as an indicator that speciation has occurred. We examined geographic variation in morphology of the continuously distributed skink Chalcides mionecton from Morocco and used Bayesian analyses of nuclear and mitochondrial DNA (mtDNA) loci to examine: (i) their concordance with morphological patterns, (ii) support for species delimitation, (iii) timing of speciation, and (iv) levels of gene flow between species. Four digit individuals were found at sites between Cap Rhir (in the south) and the northern extreme of the range, whereas five-digit individuals were found in two disjunct areas: (i) south of Cap Rhir and (ii) the north of the range where they were often syntopic with four-digit individuals. The pattern of variation in generalized body dimensions was largely concordant with that in digit number, suggesting two general morphotypes. Bayesian analyses of population structure showed that individuals from sites south of Cap Rhir formed one genetic cluster, but that northern four- and five-digit individuals clustered together. Statistical support for delimitation of these genetic clusters into two species was provided by a recent Bayesian method. Phylogenetic-coalescent dating with external time calibrations indicates that speciation was relatively recent, with a 95% posterior interval of 0.46-2.66 mya. This postdates equivalent phylogenetic dating estimates of sequence divergence by approximately 1 Ma. Statistical analyses of a small number of independent loci provide important insights into the history of the speciation process in C. mionecton and support delimitation of populations into two species with distributions that are spatially discordant with patterns of morphological variation.
    Ecology and Evolution 12/2012; 2(12):2962-73. · 1.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: AimThe seminal theory of island biogeography, based on changing rates of immigration and extinction, should be seen in a geological context, as an island's maturity influences the richness of its biota. Here, we develop an island biogeography of biotic interactions, recognizing that, besides species richness, biodiversity also encompasses the multitude of interactions among species. By sampling interactions between plants and pollinators across the Canarian archipelago, we illustrate how the local richness, specialization and endemism of biotic interactions vary with island age and area. LocationCanary Islands (27.62° N–29.42° N and 13.33° W–18.17° W). Methods On five islands, covering the full age range of the archipelago, plant–pollinator interactions were catalogued and their strength estimated. Network parameters (e.g. interaction richness and specialization) and the number of single‐island interactions (equivalent to single‐island endemics) were estimated from interaction matrices and related to island area and age. ResultsPlant species richness, interaction richness and average degree of specialization of pollinator species showed hump‐shaped relationships with island age. Pollinator richness varied with island area and plant richness. Plant specialization increased with island age, and the proportion of single‐island interactions (pSII) exhibited a U‐shaped relationship with age. Main conclusionsThe previously reported hump‐shaped relationship between species richness and island age, both on the scale of islands and of habitats, was confirmed for plant species in local networks. Both plants and pollinators were more generalized on the youngest island, which may be due to a predominance of generalist colonists. Pollinator specialization peaked on mid‐aged islands, whereas plants showed the highest specialization on old islands, potentially reflecting their different life histories. The U‐shaped relationship between the proportion of single‐island interactions and island age might be explained by (1) young islands having a high proportion of unique interactions, due to interactions between generalists, and (2) old islands having unique interactions due to an accumulation of unique pairwise interactions that have evolved through time. Thus, island age – which not only captures time per se, but also the geomorphological changes of islands – may act as a regional driver of local network structure, and so the contemporary networks we observed across the Canarian archipelago illustrate the development of a network through geological time.
    Journal of Biogeography 10/2013; 40:2020-2031. · 4.86 Impact Factor

Full-text (2 Sources)

View
4 Downloads
Available from
Jun 10, 2014