Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval.

W.M. Keck Foundation Laboratory of Neurobiology, Center for Neural Science, New York University, New York 10003, USA.
Nature (Impact Factor: 42.35). 09/2000; 406(6797):722-6. DOI: 10.1038/35021052
Source: PubMed

ABSTRACT 'New' memories are initially labile and sensitive to disruption before being consolidated into stable long-term memories. Much evidence indicates that this consolidation involves the synthesis of new proteins in neurons. The lateral and basal nuclei of the amygdala (LBA) are believed to be a site of memory storage in fear learning. Infusion of the protein synthesis inhibitor anisomycin into the LBA shortly after training prevents consolidation of fear memories. Here we show that consolidated fear memories, when reactivated during retrieval, return to a labile state in which infusion of anisomycin shortly after memory reactivation produces amnesia on later tests, regardless of whether reactivation was performed 1 or 14 days after conditioning. The same treatment with anisomycin, in the absence of memory reactivation, left memory intact. Consistent with a time-limited role for protein synthesis production in consolidation, delay of the infusion until six hours after memory reactivation produced no amnesia. Our data show that consolidated fear memories, when reactivated, return to a labile state that requires de novo protein synthesis for reconsolidation. These findings are not predicted by traditional theories of memory consolidation.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The basic design used in our human fear-conditioning studies on disrupting reconsolidation includes testing over different phases across three consecutive days. On day 1 - the fear acquisition phase, healthy participants are exposed to a series of picture presentations. One picture stimulus (CS1+) is repeatedly paired with an aversive electric stimulus (US), resulting in the acquisition of a fear association, whereas another picture stimulus (CS2-) is never followed by an US. On day 2 - the memory reactivation phase, the participants are re-exposed to the conditioned stimulus without the US (CS1-), which typically triggers a conditioned fear response. After the memory reactivation we administer an oral dose of 40 mg of propranolol HCl, a β-adrenergic receptor antagonist that indirectly targets the protein synthesis required for reconsolidation by inhibiting the noradrenaline-stimulated CREB phosphorylation. On day 3 - the test phase, the participants are again exposed to the unreinforced conditioned stimuli (CS1- and CS2-) in order to measure the fear-reducing effect of the manipulation. This retention test is followed by an extinction procedure and the presentation of situational triggers to test for the return of fear. Potentiation of the eye blink startle reflex is measured as an index for conditioned fear responding. Declarative knowledge of the fear association is measured through online US expectancy ratings during each CS presentation. In contrast to extinction learning, disrupting reconsolidation targets the original fear memory thereby preventing the return of fear. Although the clinical applications are still in their infancy, disrupting reconsolidation of fear memory seems to be a promising new technique with the prospect to persistently dampen the expression of fear memory in patients suffering from anxiety disorders and other psychiatric disorders.
    Journal of Visualized Experiments 01/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: El propósito de este artículo es analizar las relaciones entre el refuerzo y los procesos de aprendizaje y memoria.DesarrolloDiferentes estudios han descrito cómo puede influir la información sobre el refuerzo en la conducta y cómo puede usar el cerebro dicha información para controlar los procesos de aprendizaje y memoria. Parece que neuronas en diferentes estructuras cerebrales procesan la naturaleza del refuerzo de forma diferente, que abarca desde la detección y la percepción de los refuerzos hasta el uso de la información sobre refuerzos predichos para el control de la conducta dirigida a un fin determinado. Se ha podido comprobar que el sustrato neural subyacente a este procesamiento de la información reforzante está claramente implicado en la facilitación de los procesos de aprendizaje y memoria. Diferentes evidencias experimentales indican que este sistema neural puede facilitar la consolidación de la memoria en una amplia variedad de tareas de aprendizaje. Desde una perspectiva molecular, ciertos rasgos cardinales del refuerzo se han descrito como formas de memoria. Estudios en personas adictas y estudios en modelos animales de adicción han mostrado que la exposición crónica a sustancias de abuso produce cambios celulares y moleculares estables en el cerebro que subyacen a los mecanismos de plasticidad conductual asociada a la adicción. Dichas adaptaciones moleculares y celulares implicadas en la adicción también parecen estar implicadas en los procesos de aprendizaje y memoria. La dopamina parece ser una señal crítica común en ambos procesos para activar diferentes mecanismos genéticos capaces de remodelar las sinapsis y los circuitos neurales.ConclusionesA pesar de que la memoria es un proceso activo y complejo mediado por diferentes áreas cerebrales, el sustrato nervioso del refuerzo parece ser capaz de facilitar la consolidación de la memoria en diferentes paradigmas. Por ello, es lógico pensar en la existencia de múltiples rasgos equivalentes entre el refuerzo cerebral y los procesos de aprendizaje y memoria.
    Psiquiatría Biológica. 08/2008; 15(4):109-124.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The amygdala has long been associated with emotion and motivation, playing an essential part in processing both fearful and rewarding environmental stimuli. How can a single structure be crucial for such different functions? With recent technological advances that allow for causal investigations of specific neural circuit elements, we can now begin to map the complex anatomical connections of the amygdala onto behavioural function. Understanding how the amygdala contributes to a wide array of behaviours requires the study of distinct amygdala circuits.
    Nature 01/2015; 517(7534):284-92. · 42.35 Impact Factor