Article

A-to-I Pre-mRNA Editing in Drosophila Is Primarily Involved in Adult Nervous System Function and Integrity

Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington 06030, USA.
Cell (Impact Factor: 33.12). 09/2000; 102(4):437-49. DOI: 10.1016/S0092-8674(00)00049-0
Source: PubMed

ABSTRACT Specific A-to-I RNA editing, like that seen in mammals, has been reported for several Drosophila ion channel genes. Drosophila possesses a candidate editing enzyme, dADAR. Here, we describe dADAR deletion mutants that lack ADAR activity in extracts. Correspondingly, all known Drosophila site-specific RNA editing (25 sites in three ion channel transcripts) is abolished. Adults lacking dADAR are morphologically wild-type but exhibit extreme behavioral deficits including temperature-sensitive paralysis, locomotor uncoordination, and tremors which increase in severity with age. Neurodegeneration accompanies the increase in phenotypic severity. Surprisingly, dADAR mutants are not short-lived. Thus, A-to-I editing of pre-mRNAs in Drosophila acts predominantly through nervous system targets to affect adult nervous system function, integrity, and behavior.

Full-text

Available from: Liam P Keegan, May 29, 2015
0 Followers
 · 
84 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Adenosine-to-inosine RNA editing is a highly conserved process that post-transcriptionally modifies mRNA, generating proteomic diversity, particularly within the nervous system of metazoans. Transcripts encoding proteins involved in neurotransmission predominate as targets of such modifications. Previous reports suggest that RNA editing is responsive to environmental inputs in the form of temperature alterations. However, the molecular determinants underlying temperature-dependent RNA editing responses are not well understood. Results Using the poikilotherm Drosophila, we show that acute temperature alterations within a normal physiological range result in substantial changes in RNA editing levels. Our examination of particular sites reveals diversity in the patterns with which editing responds to temperature, and these patterns are conserved across five species of Drosophilidae representing over 10 million years of divergence. In addition, we show that expression of the editing enzyme, ADAR (adenosine deaminase acting on RNA), is dramatically decreased at elevated temperatures, partially, but not fully, explaining some target responses to temperature. Interestingly, this reduction in editing enzyme levels at elevated temperature is only partially reversed by a return to lower temperatures. Lastly, we show that engineered structural variants of the most temperature-sensitive editing site, in a sodium channel transcript, perturb thermal responsiveness in RNA editing profile for a particular RNA structure. Conclusions Our results suggest that the RNA editing process responds to temperature alterations via two distinct molecular mechanisms: through intrinsic thermo-sensitivity of the RNA structures that direct editing, and due to temperature sensitive expression or stability of the RNA editing enzyme. Environmental cues, in this case temperature, rapidly reprogram the Drosophila transcriptome through RNA editing, presumably resulting in altered proteomic ratios of edited and unedited proteins. Electronic supplementary material The online version of this article (doi:10.1186/s12915-014-0111-3) contains supplementary material, which is available to authorized users.
    BMC Biology 01/2015; [Epub ahead of print]. DOI:10.1186/s12915-014-0111-3 · 7.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: ADAR1, involved in A-to-I RNA editing, belongs to adenosine deaminase acting on RNA (ADAR) family. A-to-I RNA editing is the most widespread editing phenomenon in higher eukaryotes. In the present study, we cloned and identified the full-length cDNA, complete genomic sequence and the promoter sequence of grass carp (Ctenopharyngodon idella) ADAR1 (CiADAR1) by homology cloning strategy and genome walking. CiADAR1 full-length cDNA is comprised of a 5'UTR (436 bp), a 3'UTR (229 bp) and a 4179 bp ORF encoding a polypeptide of 1392 amino acids. The deduced amino acid sequence of CiADAR1 contains two Z-DNA binding domains, three dsRNA binding motifs and a conserved catalytic domain. The complete genomic CiADAR1 has 16 exons and 15 introns. Phylogenetic tree analysis revealed that CiADAR1 shared high homology with Danio rerio ADAR1 (DrADAR1). RT-PCR showed that CiADAR1 were ubiquitously expressed and significantly up-regulated after stimulation with poly I:C. In spleen and liver, CiADAR1 mRNA reached the peak at 12 h and maintained the highest level during 12 - 24 h post-injection. CiADAR1 promoter was found to be 1102 bp in length and divided into two distinct regions, the proximal region containing three putative interferon regulatory factor binding elements (IRF-E) and the distal region containing only one IRF-E. To further study the transcriptional regulatory mechanism of CiADAR1, grass carp IRF1 (CiIRF1) and IRF3 (CiIRF3) were expressed in Escherichia coli BL21 and purified by affinity chromatography with the Ni-NTA His-Bind Resin. Then, gel mobility shift assay was employed to analyze the affinity of CiADAR1 promoter sequence with CiIRF1 and CiIRF3 in vitro. The result revealed that CiIRF1 and CiIRF3 bound to CiADAR1 promoter with high affinity, indicating that IRF1 and IRF3 could be the potential transcriptional regulatory factor for CiADAR1. Co-transfection of pcDNA3.1-IRF1 (or pcDNA3.1-IRF3) with pGL3-CiADAR1 into C. idella kidney (CIK) cells showed that both IRF1 and IRF3 played a positive role in CiADAR1 transcription. In addition, the mutant assay revealed that the proximal region of CiADAR1 promoter is the main regulatory region in CiADAR1 transcription. Copyright © 2015. Published by Elsevier Ltd.
    Developmental & Comparative Immunology 02/2015; 50(2). DOI:10.1016/j.dci.2015.02.006 · 3.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A-to-I RNA editing by adenosine deaminases acting on RNA is a post-transcriptional modification that is crucial for normal life and development in vertebrates. RNA editing has been shown to be very abundant in the human transcriptome, specifically at the primate-specific Alu elements. The functional role of this wide-spread effect is still not clear; it is believed that editing of transcripts is a mechanism for their down-regulation via processes such as nuclear retention or RNA degradation. Here we combine 2 neural gene expression datasets with genome-level editing information to examine the relation between the expression of ADAR genes with the expression of their target genes. Specifically, we computed the spatial correlation across structures of post-mortem human brains between ADAR and a large set of targets that were found to be edited in their Alu repeats. Surprisingly, we found that a large fraction of the edited genes are positively correlated with ADAR, opposing the assumption that editing would reduce expression. When considering the correlations between ADAR and its targets over development, 2 gene subsets emerge, positively correlated and negatively correlated with ADAR expression. Specifically, in embryonic time points, ADAR is positively correlated with many genes related to RNA processing and regulation of gene expression. These findings imply that the suggested mechanism of regulation of expression by editing is probably not a global one; ADAR expression does not have a genome wide effect reducing the expression of editing targets. It is possible, however, that RNA editing by ADAR in non-coding regions of the gene might be a part of a more complex expression regulation mechanism.
    RNA Biology 11/2014; 11(11):1448-57. DOI:10.4161/15476286.2014.992286 · 5.38 Impact Factor