Article

Nuclear Factor-κB/IκB Signaling Pathway May Contribute to the Mediation of Paclitaxel-induced Apoptosis in Solid Tumor Cells

Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston 29425, USA.
Cancer Research (Impact Factor: 9.28). 09/2000; 60(16):4426-32.
Source: PubMed

ABSTRACT Paclitaxel (Taxol), a naturally occurring antimitotic agent, has shown significant cell-killing activity in a variety of tumor cells through induction of apoptosis. The mechanism by which paclitaxel induces cell death is not entirely clear. Recent studies in our laboratory demonstrated that glucocorticoids selectively inhibited paclitaxel-induced apoptosis without affecting the ability of paclitaxel to induce microtubule bundling and mitotic arrest. This finding suggests that apoptotic cell death induced by paclitaxel may occur via a pathway independent of mitotic arrest. In the current study, through analyses of a number of apoptosis-associated genes or regulatory proteins, we discovered that paclitaxel significantly down-regulated IkappaB-alpha, the cytoplasmic inhibitor of transcription factor nuclear factor-kappaB (NF-kappaB), which in turn promoted the nuclear translocation of NF-kappaB and its DNA binding activity. In contrast, we found that glucocorticoids could antagonize paclitaxel-mediated NF-kappaB nuclear translocation and activation through induction of IkappaB-alpha protein synthesis. Northern blotting analyses demonstrated that the steady-state level of IkappaB-alpha mRNA was not affected by paclitaxel, which suggests that the down-regulation of IkappaB-alpha by paclitaxel is attributable to protein degradation rather than suppression of transcription. Furthermore, through transfection assays, we demonstrated that tumor cells stably transfected with antisense IkappaB-alpha expression vectors remarkably increased their sensitivity to paclitaxel-induced apoptosis. Finally, we found that a key subunit of IkappaB kinase (IKK) complex, IKKbeta, was up-regulated by paclitaxel, which implies that paclitaxel might down-regulate IkappaB-alpha through modulation of IKKbeta activity. All of these results suggest that the NF-kappaB/IkappaB-alpha signaling pathway may contribute to the mediation of paclitaxel-induced cell death in solid tumor cells.

Download full-text

Full-text

Available from: Weimin Fan, Dec 27, 2013
0 Followers
 · 
189 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: PLGA porous microspheres loaded with doxorubicin (DOX) and paclitaxel (PTX) were developed for in situ treatment of metastatic lung cancer. The synergistic effect of the combined drugs was investigated against B16F10 cells to obtain the optimal prescription for in vivo studies. The combination therapy showed great synergism when DOX was the majority in the combination therapy, while they showed moderate antagonism when PTX is in major. The combination of DOX and PTX at a molar ratio of 5/1 showed the best synergistic therapeutic effect in the free form. However, the drugs exhibited more synergism in the PLGA microspheres at a molar ratio of 2/1, due to the difference in drug release rate. The in vivo study verified the synergism of DOX and PTX at the optimal molar ratio. These results suggested that dual encapsulation of DOX and PTX in porous PLGA microspheres would be a promising technology for long effective lung cancer treatment.
    European Journal of Pharmaceutics and Biopharmaceutics 10/2014; DOI:10.1016/j.ejpb.2014.09.012 · 4.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Drug resistance frequently results in poor prognosis and high 5-year recurrence rate in estrogen receptor-negative (ER-) breast cancer patients. Herein, we examined the reversal effects of fulvestrant on multidrug resistance (MDR) in ER- breast cancer cells. Co-administration of fulvestrant significantly sensitized ER- MDR tumors to paclitaxel both in vitro and in vivo. Further analyses indicated that fulvestrant did not affect P-gp expression, but could inhibit P-gp function and subsequently reverse P-gp mediated drug resistance in ER- breast cancer cells. These results showed that combination of fulvestrant and chemotherapeutic agents might provide an effective treatment for ER- MDR breast cancers.
    Cancer letters 01/2014; 346(2). DOI:10.1016/j.canlet.2014.01.008 · 5.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The diagnosis of cancer elicits a broad range of well-characterized stress-related biobehavioral responses. Recent studies also suggest that an individual's neuroendocrine stress response can influence tumor biology. One of the major physiological pathways altered by the response to unrelenting social stressors is the hypothalamic-pituitary-adrenal or HPA axis. Initially following acute stress exposure, an increased glucocorticoid response is observed; eventually, chronic stress exposure can lead to a blunting of the normal diurnal cortisol pattern. Interestingly, recent evidence also links high primary tumor glucocorticoid receptor expression (and associated increased glucocorticoid-mediated gene expression) to more rapid estrogen-independent breast cancer progression. Furthermore, animal models of human breast cancer suggest that glucocorticoids inhibit tumor cell apoptosis. These findings provide a conceptual basis for understanding the molecular mechanisms underlying the influence of the individual's stress response, and specifically glucocorticoid action, on breast cancer and other solid tumor biology. How this increased glucocorticoid signaling might contribute to cancer progression is the subject of this review.
    Brain Behavior and Immunity 11/2012; 30. DOI:10.1016/j.bbi.2012.10.022 · 6.13 Impact Factor