Article

Sensitivity and specificity of clinical criteria for hereditary non-polyposis colorectal cancer associated mutations in MSH2 and MLH1.

Division of Gastroenterology, Dana-Farber Cancer Institute, and Harvard Medical School, 44 Binney Street, Boston, Massachusetts 02115, USA. sapna_syngal@dfci.harvard,edu
Journal of Medical Genetics (Impact Factor: 5.64). 10/2000; 37(9):641-5.
Source: PubMed

ABSTRACT There are multiple criteria for the clinical diagnosis of hereditary non-polyposis colorectal cancer (HNPCC). The value of several of the newer proposed diagnostic criteria in identifying subjects with mutations in HNPCC associated mismatch repair genes has not been evaluated, and the performance of the different criteria have not been formally compared with one another.
We classified 70 families with suspected hereditary colorectal cancer (excluding familial adenomatous polyposis) by several existing clinical criteria for HNPCC, including the Amsterdam criteria, the Modified Amsterdam criteria, the Amsterdam II criteria, and the Bethesda criteria. The results of analysis of the mismatch repair genes MSH2 and MLH1 by full gene sequencing were available for a proband with colorectal neoplasia in each family. The sensitivity and specificity of each of the clinical criteria for the presence of MSH2 and MLH1 mutations were calculated.
Of the 70 families, 28 families fulfilled the Amsterdam criteria, 39 fulfilled the Modified Amsterdam Criteria, 34 fulfilled the Amsterdam II criteria, and 56 fulfilled at least one of the seven Bethesda Guidelines for the identification of HNPCC patients. The sensitivity and specificity of the Amsterdam criteria were 61% (95% CI 43-79) and 67% (95% CI 50-85). The sensitivity of the Modified Amsterdam and Amsterdam II criteria were 72% (95% CI 58-86) and 78% (95% CI 64-92), respectively. Overall, the most sensitive criteria for identifying families with pathogenic mutations were the Bethesda criteria, with a sensitivity of 94% (95% CI 88-100); the specificity of these criteria was 25% (95% CI 14-36). Use of the first three criteria of the Bethesda guidelines only was associated with a sensitivity of 94% and a specificity of 49% (95% CI 34-64).
The Amsterdam criteria for HNPCC are neither sufficiently sensitive nor specific for use as a sole criterion for determining which families should undergo testing for MSH2 and MLH1 mutations. The Modified Amsterdam and the Amsterdam II criteria increase sensitivity, but still miss many families with mutations. The most sensitive clinical criteria for identifying subjects with pathogenic MSH2 and MLH1 mutations were the Bethesda Guidelines; a streamlined version of the Bethesda Guidelines may be more specific and easier to use in clinical practice.

0 Followers
 · 
70 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lynch syndrome is the most common hereditary colorectal cancer syndrome and the most common cause of hereditary endometrial cancer. Identifying and evaluating families for Lynch syndrome is increasing in complexity due to the recognition that: family history-based clinical criteria lack sensitivity and specificity; genetic testing for Lynch syndrome continues to evolve as understanding of the molecular mechanisms underlying it evolves; and the Lynch syndrome phenotype encompasses multiple organ systems and demonstrates overlap with other hereditary cancer syndromes. This document is a summary of considerations when evaluating individuals and families for Lynch syndrome, including information on cancer risks, diagnostic criteria, tumor and genetic testing strategies, and the management of individuals with this condition.
    Journal of Genetic Counseling 10/2010; 20(1):5-19. DOI:10.1007/s10897-010-9325-x
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lynch syndrome is mostly characterized by early-onset colorectal and endometrial adenocarcinomas. Over 90% of the causal mutations occur in two mismatch repair genes, MSH2 and MLH1. The aim of this study was to evaluate the age-dependent cancer risk in MSH2 or MLH1 mutation carriers from data of DNA diagnostic laboratories. To avoid overestimation, evaluation was based on the age-dependent proportion of mutation carriers in asymptomatic first-degree relatives of identified mutation carriers. Data from 859 such eligible relatives were collected from 8 centers; 387 were found to have inherited the mutation from their relatives. Age-dependent risks were calculated either using a nonparametric approach for four discrete age groups or assuming a modified Weibull distribution for the dependence of risk on age. Cancer risk was estimated starting at 28 (25–32 0.68 confidence interval) and to reach near 0.70 at 70 years. The risks were very similar for MSH2 and MLH1 mutation carriers. Although not statistically significant, the risk in males appeared to precede that for females by ten years. This difference needs to be investigated on a larger dataset. If confirmed, this would indicate that the onset of the colonoscopic surveillance may be different in male and female mutation carriers.
    Journal of Cancer Epidemiology 03/2009; 2009:791754. DOI:10.1155/2009/791754
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The identification of germline mutations in families with HNPCC is hampered by genetic heterogeneity and clinical variability. In previous studies, MSH2 and MLH1 mutations were found in approximately two-thirds of the Amsterdam-criteria-positive families and in much lower percentages of the Amsterdam-criteria-negative families. Therefore, a considerable proportion of HNPCC seems not to be accounted for by the major mismatch repair (MMR) genes. Does the latter result from a lack of sensitivity of mutation detection techniques, or do additional genes underlie the remaining cases? In this study we address these questions by thoroughly investigating a cohort of clinically selected North American families with HNPCC. We analyzed 59 clinically well-defined U.S. families with HNPCC for MSH2, MLH1, and MSH6 mutations. To maximize mutation detection, different techniques were employed, including denaturing gradient gel electrophoresis, Southern analysis, microsatellite instability, immunohistochemistry, and monoallelic expression analysis. In 45 (92%) of the 49 Amsterdam-criteria-positive families and in 7 (70%) of the 10 Amsterdam-criteria-negative families, a mutation was detected in one of the three analyzed MMR genes. Forty-nine mutations were in MSH2 or MLH1, and only three were in MSH6. A considerable proportion (27%) of the mutations were genomic rearrangements (12 in MSH2 and 2 in MLH1). Notably, a deletion encompassing exons 1-6 of MSH2 was detected in seven apparently unrelated families (12% of the total cohort) and was subsequently proven to be a founder. Screening of a second U.S. cohort with HNPCC from Ohio allowed the identification of two additional kindreds with the identical founder deletion. In the present study, we show that optimal mutation detection in HNPCC is achieved by combining accurate and expert clinical selection with an extensive mutation detection strategy. Notably, we identified a common North American deletion in MSH2, accounting for approximately 10% of our cohort. Genealogical, molecular, and haplotype studies showed that this deletion represents a North American founder mutation that could be traced back to the 19th century.
    The American Journal of Human Genetics 06/2003; 72(5):1088-100. DOI:10.1086/373963

Preview

Download
0 Downloads
Available from