Article

Solution structure of a mutant of transcription factor 1: implications for enhanced DNA binding.

Department of Chemistry and Biochemistry, University of California, at San Diego, La Jolla, CA 92093, USA.
Journal of Molecular Biology (Impact Factor: 3.96). 10/2000; 302(4):821-30. DOI: 10.1006/jmbi.2000.4084
Source: PubMed

ABSTRACT An NMR solution structure of a mutant of the homodimer protein transcription factor 1, TF1-G15/I32 (22 kDa), has been solved to atomic resolution, with 23 final structures that converge to an r.m. s.d. of 0.78 A. The overall shape of TF1-G15/I32 remains similar to that of the wild-type protein and other type II DNA-binding proteins. Each monomer has two N-terminal alpha-helices separated by a short loop, followed by a three-stranded beta-sheet, whose extension between the second and third beta-strands forms an antiparallel beta-ribbon arm, leading to a C-terminal third alpha-helix that is severely kinked in the middle. Close examination of the structure of TF1-G15/I32 reveals why it is more stable and binds DNA more tightly than does its wild-type counterpart. The dimeric core, consisting of the N-terminal helices and the beta-sheets, is more tightly packed, and this might be responsible for its increased thermal stability. The DNA-binding domain, composed of the top face of the beta-sheet, the beta-ribbon arms and the C-terminal helices, is little changed from wild-type TF1. Rather, the enhancement in DNA affinity must be due almost exclusively to the creation of an additional DNA-binding site at the side of the dimer by changes affecting helices 1 and 2: helix 2 of TF1-G15/I32 is one residue longer than helix 2 of the wild-type protein, bends inward, and is both translationally and rotationally displaced relative to helix 1. This rearrangement creates a longer, narrower fissure between the V-shaped N-terminal helices and exposes additional positively charged surface at each side of the dimer.

0 Followers
 · 
52 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bacterial histone-like HU proteins are critical to maintenance of the nucleoid structure. In addition, they participate in all DNA-dependent functions, including replication, repair, recombination and gene regulation. In these capacities, their function is typically architectural, inducing a specific DNA topology that promotes assembly of higher-order nucleo-protein structures. Although HU proteins are highly conserved, individual homologs have been shown to exhibit a wide range of different DNA binding specificities and affinities. The existence of such distinct specificities indicates functional evolution and predicts distinct in vivo roles. Emerging evidence suggests that HU proteins discriminate between DNA target sites based on intrinsic flexure, and that two primary features of protein binding contribute to target site selection: The extent to which protein-mediated DNA kinks are stabilized and a network of surface salt-bridges that modulate interaction between DNA flanking the kinks and the body of the protein. These features confer target site selection for a specific HU homolog, they suggest the ability of HU to induce different DNA structural deformations depending on substrate, and they explain the distinct binding properties characteristic of HU homologs. Further divergence is evidenced by the existence of HU homologs with an additional lysine-rich domain also found in eukaryotic histone H1.
    Current issues in molecular biology 10/2011; 13:1-12. · 6.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prokaryotic genomes are compacted by association with small basic proteins, generating what has been termed bacterial chromatin. The ubiquitous DNA-binding protein HU serves this function. DNA-binding properties of HU from the hyperthermophilic eubacterium Thermotoga maritima are shown here to differ significantly from those characteristic of previously described HU homologs. Electrophoretic mobility shift analyses show that T. maritima HU (TmHU) binds double-stranded DNA with high affinity (K(d)=5.6(+/-0.7) nM for 37 bp DNA). Equivalent affinity is observed between 4 degrees C and 45 degrees C. TmHU has higher affinity for DNA containing a set of 4 nt loops separated by 9 bp (K(d)=1.4(+/-0.3) nM), consistent with its introduction of two DNA kinks. Using DNA probes of varying length, the optimal binding site for TmHU is estimated at 37 bp, in sharp contrast to the 9-10 bp binding site reported for other HU homologs. Alignment of >60 HU sequences demonstrates significant sequence conservation: A DNA-intercalating proline residue is almost universally conserved, and it is preceded by arginine and asparagine in most sequences, generating a highly conserved RNP motif; V substitutes for R only in HU from Thermotoga, Thermus and Deinococcus. A fivefold increase in DNA-binding affinity is observed for TmHU in which V is replaced with R (TmHU-V61R; K(d)=1.1(+/-0.2) nM), but a change in the trajectory of DNA flanking the sites of DNA intercalation is inferred from analysis of TmHU-V61R binding to DNA modified with 4 nt loops or with substitutions of 5-hydroxymethyluracil for thymine. Survival in extreme environments places unique demands on protection of genomic DNA from thermal destabilization and on access of DNA to the cellular machinery, demands that may be fulfilled by the specific DNA-binding properties of HU and by the fine structure of the bacterial chromatin.
    Journal of Molecular Biology 08/2001; 311(3):491-502. DOI:10.1006/jmbi.2001.4763 · 3.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bacterial histone-like HU proteins are critical to maintenance of the nucleoid structure. In addition, they participate in all DNA-dependent functions, including replication, repair, recombination and gene regulation. In these capacities, their function is typically architectural, inducing a specific DNA topology that promotes assembly of higher-order nucleo-protein structures. Although HU proteins are highly conserved, individual homologs have been shown to exhibit a wide range of different DNA binding specificities and affinities. The existence of such distinct specificities indicates functional evolution and predicts distinct in vivo roles. Emerging evidence suggests that HU proteins discriminate between DNA target sites based on intrinsic flexure, and that two primary features of protein binding contribute to target site selection: The extent to which protein-mediated DNA kinks are stabilized and a network of surface salt-bridges that modulate interaction between DNA flanking the kinks and the body of the protein. These features confer target site selection for a specific HU homolog, they suggest the ability of HU to induce different DNA structural deformations depending on substrate, and they explain the distinct binding properties characteristic of HU homologs. Further divergence is evidenced by the existence of HU homologs with an additional lysine-rich domain also found in eukaryotic histone H1.
    Current issues in molecular biology 01/2011; 13(1):1-12. · 6.00 Impact Factor