Validation of bupropion hydroxylation as a selective marker of human cytochrome P450 2B6 catalytic activity.

Division of Pharmacotherapy, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
Drug Metabolism and Disposition (Impact Factor: 3.33). 11/2000; 28(10):1222-30.
Source: PubMed

ABSTRACT The purpose of this study was to establish bupropion (BUP) hydroxylation as a selective in vitro marker of cytochrome P450 (CYP) 2B6 catalytic activity. Among a panel of 16 human liver microsomes (HLMs), BUP hydroxylase activity varied 80-fold when assayed at 500 microM substrate and significantly correlated with CYP2B6 blotting density (r(2) = 0.99) and S-mephenytoin N-demethylase activity (r(2) = 0.98). Kinetic analysis of BUP hydroxylation was performed in a subset of seven HLMs representative of the 80-fold range in activity. Sigmoidal kinetics suggestive of allosteric activation was observed in five HLMs exhibiting low or high activity; the mean apparent K(m) for BUP hydroxylation in these HLMs (130 microM) was similar to the K(m) for cDNA-expressed CYP2B6 (156 microM). Nonsaturable, biphasic kinetics was observed in two HLMs exhibiting low activity. Among a panel of cDNA-expressed P450 isoforms, CYP2B6 and CYP2E1 demonstrated the highest rates of BUP hydroxylation at 12 mM BUP (7.0 and 2.4 pmol/min/pmol of P450, respectively). The relative contributions of CYP2B6 and CYP2E1 to BUP hydroxylation were estimated by using immunoinhibitory monoclonal antibodies (MAB) to these enzymes. MAB-2B6 produced 88% maximum inhibition of BUP hydroxylation when assayed at 12 mM BUP in a high activity HLM, whereas MAB-2E1 produced 81% maximum inhibition in a low activity HLM. However, negligible inhibition by MAB-2E1 was observed when low and high activity HLMs were assayed at 500 microM BUP. These results demonstrate selectivity of BUP hydroxylation for CYP2B6 at 500 microM BUP, thereby validating its use as a diagnostic in vitro marker of CYP2B6 catalytic activity.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract The understanding of drug biotransformation is an important medical topic. The oxidative pathways that involve CYPs have been extensively studied in drug metabolism in contrast to the reductive pathways. This review focuses on drugs that have been reported to be reduced at the carbonyl group in vivo. Although the carbonyl reduction of these drugs is well known, our understanding of the carbonyl reducing enzymes (CRE) that perform these reactions is limited. We have summarized the published data in order to thoroughly describe the reductive metabolism of the selected drugs and to demonstrate the role of carbonyl reduction in the context of their overall metabolism. The number of drugs recognized as substrates for CREs has increased considerably in recent years. Moreover, the importance of carbonyl reduction in the overall metabolism of these drugs is often surprisingly high. Because only limited information is available about the CREs responsible for these reactions, additional research is needed to improve our understanding of the metabolism of drugs undergoing carbonyl reduction. Carbonyl reduction should be investigated during drug development because it can either positively or negatively influence drug efficacy.
    Drug Metabolism Reviews 10/2013; 46(1). DOI:10.3109/03602532.2013.853078 · 6.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The effects of sex, ethnicity, and genetic polymorphism on hepatic CYP2B6 expression and activity were previosuly demonstrated in vitro. Race/Ethnic differences in CYP2B6 genotype and phenotype were observed only in women. To identify important covariates associated with inter-individual variation in CYP2B6 activity in vivo, we evaluated these effects in healthy volunteers using bupropion as a CYP2B6 probe substrate. A fixed 150 mg oral sustained-release dose of bupropion was administered to 100 healthy volunteers comprising four sex/ethnicity cohorts (n=25 each): Caucasian males Caucasian, African American and Hispanic females. Blood samples were obtained at 0 and 6 hours post-dose for the measurement of serum bupropion (BU) and hydroxybupropion (HB) concentrations. Whole blood was obtained at baseline for CYP2B6 genotyping. To characterize the relationship between CYP2B6 activity and ethnicity, sex, and genotype when accounting for serum BU concentrations (dose-adjusted log10-transformed), ANCOVA model was fitted in which the dependent variable was CYP2B6 activity represented as the log10-transformed, metabolic ratio of HB to BU concentrations. Several CYP2B6 polymorphisms were associated with CYP2B6 activity. Evidence of dependence of CYP2B6 activity on ethnicity, or genotype-by-ethnicity interactions was not detected in females. These results suggest that CYP2B6 genotype is the most important patient variable for predicting the level of CYP2B6 activity in females, when measured by the metabolism of bupropion. The bupropion metabolic ratio appears to detect known differences in CYP2B6 activity associated with genetic polymorphism, across different ethnic groups. Prospective studies will be needed to validate the use of bupropion as a probe substrate for clinical use.
    Drug metabolism and disposition: the biological fate of chemicals 12/2012; 41(3). DOI:10.1124/dmd.112.048108 · 3.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Identification of poor and rapid metabolizers for the category of drugs metabolized by cytochrome P450 2B6 (CYP2B6) is important for understanding the differences in clinical responses of drugs metabolized by this enzyme. This study reports the prevalence of poor and rapid metabolizers in North Indian population residing in the National Capital Territory. The prevalence of poor and rapid metabolizers was determined in the target population for the category of drugs metabolized by CYP2B6 by measuring plasma bupropion, a drug metabolized by CYP2B6, and its metabolite. Bupropion (75 mg) was administered to 107 volunteers, and the drug (bupropion) and its metabolite (hydroxybupropion) were determined simultaneously by LCMS/MS in the plasma. CYP2B6 activity was measured as hydroxybupropion/bupropion ratio, and volunteers were categorized as rapid or poor metabolizers on the basis of cutoff value of log (hydroxybupropion/bupropion). Significant differences were observed between the mean metabolite/drug ratio of rapid metabolizers (Mean = 0.59) and poor metabolizers (Mean = 0.26) with p<0.0001. Results indicate that 20.56% individuals in the target population were poor metabolizers for the category of drugs metabolized by CYP2B6. Cutoff value defined in this study can be used as a tool for evaluating the status of CYP2B6 using bupropion as a probe drug. The baseline information would be clinically useful before administering the drugs metabolized by this isoform.
    SpringerPlus 10/2012; 1:34. DOI:10.1186/2193-1801-1-34