Article

The role of the cerebellum in cognition and behavior: A selective review

Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Canada.
Journal of Neuropsychiatry (Impact Factor: 2.77). 02/2000; 12(2):193-8. DOI: 10.1176/appi.neuropsych.12.2.193
Source: PubMed

ABSTRACT The cerebellum has traditionally been seen primarily to coordinate voluntary movement, but evidence is accumulating that it may play a role in cognition and behavior as well. This is a selective review of studies assessing potential cognitive deficits and personality changes associated with cerebellar disease. Preliminary studies of the role of the cerebellum in schizophrenia, dementia, and other psychiatric disorders are also discussed. Efforts to understand the neurological substrates of behavior should consider the role of the cerebellum.

0 Followers
 · 
119 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The limbic system is part of an intricate network which is involved in several functions like memory and emotion. Traditionally the role of the cerebellum was considered mainly associated to motion control; however several evidences are raising about a role of the cerebellum in learning skills, emotions control, mnemonic and behavioral processes involving also connections with limbic system. In 15 normal subjects we studied limbic connections by probabilistic Constrained Spherical Deconvolution (CSD) tractography. The main result of our work was to prove for the first time in human brain the existence of a direct cerebello-limbic pathway which was previously hypothesized but never demonstrated. We also extended our analysis to the other limbic connections including cingulate fasciculus, inferior longitudinal fasciculus, uncinated fasciculus, anterior thalamic connections and fornix. Although these pathways have been already described in the tractographic literature we provided reconstruction, quantitative analysis and Fractional Anisotropy (FA) right-left symmetry comparison using probabilistic CSD tractography that is known to provide a potential improvement compared to previously used Diffusion Tensor Imaging (DTI) techniques. The demonstration of the existence of cerebello-limbic pathway could constitute an important step in the knowledge of the anatomic substrate of non-motor cerebellar functions. Finally the CSD statistical data about limbic connections in healthy subjects could be potentially useful in the diagnosis of pathological disorders damaging this system.
    Frontiers in Human Neuroscience 12/2014; 8. DOI:10.3389/fnhum.2014.00987 · 2.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Behavioral impairments are the most empirical consequence of diabetes mellitus documented in both humans and animal models, but the underlying causes are still poorly understood. As the cerebellum plays a major role in coordination and execution of the motor functions, we investigated the possible involvement of glial activation, cellular degeneration and glutamate transportation in the cerebellum of rats, rendered diabetic by a single injection of streptozotocin (STZ; 45 mg/kg body weight; intraperitoneally). Motor function alterations were studied using Rotarod test (motor coordination) and grip strength (muscle activity) at 2nd, 4th, 6th, 8th, 10th, and 12th week post-diabetic confirmation. Scenario of glial (astroglia and microglia) activation, cell death and glutamate transportation was gaged using immunohistochemistry, histological study and image analysis. Cellular Q7 degeneration was clearly demarcated in the diabetic cerebellum. Glial cells were showing sequential and marked activation following diabetes in terms of both morphology and cell number. Bergmann glial cells were hypertrophied and distorted. Active caspase-3 positive apoptotic cells were profoundly present in all three cerebellar layers. Reduced co-labeling of GLT-1 and GFAP revealed the altered glutamate transportation in cerebellum following diabetes. These results, exclusively derived from histology, immunohistochemistry and cellular quantification, provide first insight over the associative reciprocity between the glial activation, cellular degeneration and reduced glutamate transportation, which presumably lead to the behavioral alterations following STZ-induced diabetes.
    Frontiers in Cellular Neuroscience 10/2014; · 4.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Anatomical tracing studies in primates have revealed neural tracts from the cerebellar dentate nuclei to prefrontal cortex, implicating a cerebellar role in nonmotor processes. Experiments in rats examining the functional role of this cerebellothalamocortical pathway have demonstrated the development of visuospatial and motivational deficits following lesions of the dentate nuclei, in the absence of motor impairment. These behavioral deficits possibly occur due to structural modifications of the cerebral cortex secondary to loss of cerebellar input. The current study characterized morphological alterations in prefrontal cortex important for visuospatial and motivational processes following bilateral cerebellar dentate nuclei lesions. Rats received either bilateral electrolytic cerebellar dentate nuclei lesions or sham surgery followed by a 30-day recovery. Randomly selected Golgi-impregnated neurons in prefrontal cortex were examined for analysis. Measures of branch length and spine density revealed no differences between lesioned and sham rats in either apical or basilar arbors; however, the proportion of immature to mature spines significantly decreased in lesioned rats as compared to sham controls, with reductions of 33% in the basilar arbor and 28% in the apical arbor. Although expected pruning of branches and spines did not occur, the results are consistent with the hypothesis that cerebellar lesions influence prefrontal morphology and support the possibility that functional deficits following cerebellar dentate nuclei lesions are related to prefrontal morphological alteration.
    Brain research 12/2013; DOI:10.1016/j.brainres.2013.11.032 · 2.83 Impact Factor