Article

Automated sleep stage scoring using hybrid rule- and case-based reasoning.

Interdisciplinary Program of Medical and Biological Engineering Major, College of Medicine, Seoul National University, Korea.
Computers and Biomedical Research 11/2000; 33(5):330-49. DOI: 10.1006/cbmr.2000.1549
Source: PubMed

ABSTRACT We propose an automated method for sleep stage scoring using hybrid rule- and case-based reasoning. The system first performs rule-based sleep stage scoring, according to the Rechtschaffen and Kale's sleep-scoring rule (1968), and then supplements the scoring with case-based reasoning. This method comprises signal processing unit, rule-based scoring unit, and case-based scoring unit. We applied this methodology to three recordings of normal sleep and three recordings of obstructive sleep apnea (OSA). Average agreement rate in normal recordings was 87.5% and case-based scoring enhanced the agreement rate by 5.6%. This architecture showed several advantages over the other analytical approaches in sleep scoring: high performance on sleep disordered recordings, the explanation facility, and the learning ability. The results suggest that combination of rule-based reasoning and case-based reasoning is promising for an automated sleep scoring and it is also considered to be a good model of the cognitive scoring process.

0 Bookmarks
 · 
88 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The main objective of this work was the development of a computer-based Expert Sleep Analysis Methodology (ESAM) to aid sleep care physicians in the diagnosis of pre-Parkinson's disease symptoms using polysomnogram data. ESAM is significant because it streamlines the analysis of the human sleep cycles and aids the physician in the identification, treatment, and prediction of sleep disorders. In this work four aspects of computer-based human sleep analysis were investigated: polysomnogram interpretation, pre-processing, sleep event classification, and abnormal sleep detection. A review of previous developments in these four areas is provided along with their relationship to the establishment of ESAM. Polysomnogram interpretation focuses on the ambiguities found in human polysomnogram analysis when using the rule based 1968 sleep staging manual edited by Rechtschaffen and Kales (R&K). ESAM is presented as an alternative to the R&K approach in human polysomnogram interpretation. The second area, pre-processing, addresses artifact processing techniques for human polysomnograms. Sleep event classification, the third area, discusses feature selection, classification, and human sleep modeling approaches. Lastly, abnormal sleep detection focuses on polysomnogram characteristics common to patients suffering from Parkinson's disease. The technical approach in this work utilized polysomnograms of control subjects and pre-Parkinsonian disease patients obtained from the Emory Clinic Sleep Disorders Center (ECSDC) as inputs into ESAM. The engineering tools employed during the development of ESAM included the Generalized Singular Value Decomposition (GSVD) algorithm, sequential forward and backward feature selection algorithms, Particle Swarm Optimization algorithm, k-Nearest Neighbor classification, and Gaussian Observation Hidden Markov Modeling (GOHMM). In this study polysomnogram data was preprocessed for artifact removal and compensation using band-pass filtering and the GSVD algorithm. Optimal features for characterization of polysomnogram data of control subjects and pre-Parkinsonian disease patients were obtained using the sequential forward and backward feature selection algorithms, Particle Swarm Optimization, and k-Nearest Neighbor classification. ESAM output included GOHMMs constructed for both control subjects and pre-Parkinsonian disease patients. Furthermore, performance evaluation techniques were implemented to make conclusions regarding the constructed GOHMM's reflection of the underlying nature of the human sleep cycle.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Electroencephalogram (EEG) signals are widely used to study the activity of the brain, such as to determine sleep stages. These EEG signals are nonlinear and non-stationary in nature. It is difficult to perform sleep staging by visual interpretation and linear techniques. Thus, we use a nonlinear technique, higher order spectra (HOS), to extract hidden information in the sleep EEG signal. In this study, unique bispectrum and bicoherence plots for various sleep stages were proposed. These can be used as visual aid for various diagnostics application. A number of HOS based features were extracted from these plots during the various sleep stages (Wakefulness, Rapid Eye Movement (REM), Stage 1-4 Non-REM) and they were found to be statistically significant with p-value lower than 0.001 using ANOVA test. These features were fed to a Gaussian mixture model (GMM) classifier for automatic identification. Our results indicate that the proposed system is able to identify sleep stages with an accuracy of 88.7%.
    International Journal of Neural Systems 12/2010; 20(6):509-21. · 5.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sleep scoring involves classification of polysomnographic data into the various sleep stages as defined by Retschaffen and Kales. This process is time-consuming and laborious as it involves experts visually scoring the data. During recent years, there has been an increasing focus on automated sleep scoring systems and professional software programs are finding increased use. However, these systems are not relied on for scoring and are often used as a tool that facilitates easy visual scoring. This thesis proposes a neural network based approach to automatic sleep scoring using LabVIEW. Effort has been made to give the sleep expert more control over key parameters such as the frequency bands, and thus come up with scores that are more in agreement with the individual scorer than being a rigid interpretation of the R&K rules. Though this thesis is limited to the development of an offline software program, given the data acquisition facilites in LabVIEW, a complete system from data acquisition to sleep hypnograms is a fair possibility.

Full-text (2 Sources)

View
3 Downloads
Available from
Oct 9, 2014