Article

Injurious Mechanical Compression of Bovine Articular Cartilage Induces Chondrocyte Apoptosis

Center for Biomedical Engineering, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge 02139, USA.
Archives of Biochemistry and Biophysics (Impact Factor: 3.04). 09/2000; 381(2):205-12. DOI: 10.1006/abbi.2000.1988
Source: PubMed

ABSTRACT A bovine cartilage explant system was used to evaluate the effects of injurious compression on chondrocyte apoptosis and matrix biochemical and biomechanical properties within intact cartilage. Disks of newborn bovine articular cartilage were compressed in vitro to various peak stress levels and chondrocyte apoptotic cell death, tissue biomechanical properties, tissue swelling, glycosaminoglycan loss, and nitrite levels were quantified. Chondrocyte apoptosis occurred at peak stresses as low as 4.5 MPa and increased with peak stress in a dose-dependent manner. This increase in apoptosis was maximal by 24 h after the termination of the loading protocol. At high peak stresses (>20 MPa), greater than 50% of cells apoptosed. When measured in uniaxial confined compression, the equilibrium and dynamic stiffness of explants decreased with the severity of injurious load, although this trend was not significant until 24-MPa peak stress. In contrast, the equilibrium and dynamic stiffness measured in radially unconfined compression decreased significantly after injurious stresses of 12 and 7 MPa, respectively. Together, these results suggested that injurious compression caused a degradation of the collagen fibril network in the 7- to 12-MPa range. Consistent with this hypothesis, injurious compression caused a dose-dependent increase in tissue swelling, significant by 13-MPa peak stress. Glycosaminoglycans were also released from the cartilage in a dose-dependent manner, significant by 6- to 13-MPa peak stress. Nitrite levels were significantly increased above controls at 20-MPa peak stress. Together, these data suggest that injurious compression can stimulate cell death as well as a range of biomechanical and biochemical alterations to the matrix and, possibly, chondrocyte nitric oxide expression. Interestingly, chondrocyte programmed cell death appears to take place at stresses lower than those required to stimulate cartilage matrix degradation and biomechanical changes. While chondrocyte apoptosis may therefore be one of the earliest responses to tissue injury, it is currently unclear whether this initial cellular response subsequently drives cartilage matrix degradation and changes in the biomechanical properties of the tissue.

Download full-text

Full-text

Available from: Marc E Levenston, Jul 09, 2014
0 Followers
 · 
93 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Excessive chronic loading is thought to be one factor responsible for the onset of osteoarthritis. For example, studies using treadmill running have shown an increased risk for osteoarthritis, thereby suggesting that muscle-induced joint loading may play a role in osteoarthritis onset and progression. However, in these studies, muscle-induced loading was not carefully quantified. Here, we present a model of controlled muscular loading which allows for the accurate quantification of joint loading. The aim of this study was to evaluate the effects of long-term, cyclic, isometric and dynamic, muscle-induced joint loading of physiologic magnitude but excessive intensity on cartilage integrity and cell viability in the rabbit knee. METHODS: 24 rabbits were divided into an (i) eccentric, (ii) concentric, or (iii) isometric knee extensor contraction group (50 min of cyclic, submaximal stimulation 3 times/week for four weeks=19,500 cycles) controlled by the stimulation of a femoral nerve cuff electrode on the right hind limb. The contralateral knee was used as a non-loaded control. The knee articular cartilages were analysed by confocal microscopy for chondrocyte death, and histologically for Mankin Score, cartilage thickness and cell density. FINDINGS: All loaded knees had significantly increased cell death rates and Mankin Scores compared to the non-loaded joints. Cartilage thicknesses did not systematically differ between loaded and control joints. INTERPRETATION: Chondrocyte death and Mankin Scores were significantly increased in the loaded joints, thereby linking muscular exercise of physiologic magnitude but excessive intensity to cartilage degeneration and cell death in the rabbit knee.
    Clinical biomechanics (Bristol, Avon) 05/2013; DOI:10.1016/j.clinbiomech.2013.04.009 · 1.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cartilage loading is associated with the onset and progression of osteoarthritis and cell death may play an important role in these processes. Although much is known about cell death in joint impact loading, there is no information on joints loaded by muscular contractions. The aim of this study was to evaluate the influence of muscle generated eccentric and concentric submaximal joint loading on chondrocyte viability. We hypothesised that eccentric muscle activation leads to increased cell death rates compared to concentric loading and to controls. 16 rabbits received either 50 min of uni-lateral, cyclic eccentric (n=8) or concentric (n=8) knee loading. Muscle activation for these dynamic conditions was equivalent to an activation level that produced 20% of maximum isometric force. Contralateral joints served as unloaded controls. Cell viability was assessed using confocal microscopy. Eccentric contractions produced greater knee loading than concentric contractions. Sub-maximal contractions caused a significant increase in cell death in the loaded knees compared to the unloaded controls, and eccentric loading caused significantly more cell death than concentric loading. Cyclic sub-maximal muscle loading of the knee caused increased chondrocyte death in rabbits. These findings suggest that low levels of joint loading for prolonged periods, as occurs in endurance exercise or physical labour, may cause chondrocyte death, thereby predisposing joints to degeneration.
    Clinical biomechanics (Bristol, Avon) 10/2011; 27(3):292-8. DOI:10.1016/j.clinbiomech.2011.09.012 · 1.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There is an urgent demand for long term solutions to improve osteoarthritis treatments in the ageing population. There are drugs that control the pain but none that stop the progression of the disease in a safe and efficient way. Increased intervention efforts, augmented by early diagnosis and integrated biophysical therapies are therefore needed. Unfortunately, progress has been hampered due to the wide variety of experimental models which examine the effect of mechanical stimuli and inflammatory mediators on signal transduction pathways. Our understanding of the early mechanopathophysiology is poor, particularly the way in which mechanical stimuli influences cell function and regulates matrix synthesis. This makes it difficult to identify reliable targets and design new therapies. In addition, the effect of mechanical loading on matrix turnover is dependent on the nature of the mechanical stimulus. Accumulating evidence suggests that moderate mechanical loading helps to maintain cartilage integrity with a low turnover of matrix constituents. In contrast, nonphysiological mechanical signals are associated with increased cartilage damage and degenerative changes. This review will discuss the pathways regulated by compressive loading regimes and inflammatory signals in animal and in vitro 3D models. Identification of the chondroprotective pathways will reveal novel targets for osteoarthritis treatments.
    09/2011; 2011:979032. DOI:10.1155/2011/979032