Implementing a unified approach to family-based tests of association

Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts 02115, USA.
Genetic Epidemiology (Impact Factor: 2.95). 01/2000; 19 Suppl 1(S1):S36-42. DOI: 10.1002/1098-2272(2000)19:1+<::AID-GEPI6>3.0.CO;2-M
Source: PubMed

ABSTRACT We describe a broad class of family-based association tests that are adjusted for admixture; use either dichotomous or measured phenotypes; accommodate phenotype-unknown subjects; use nuclear families, sibships or a combination of the two, permit multiple nuclear families from a single pedigree; incorporate di- or multi-allelic marker data; allow additive, dominant or recessive models; and permit adjustment for covariates and gene-by-environment interactions. The test statistic is basically the covariance between a user-specified function of the genotype and a user-specified function of the trait. The distribution of the statistic is computed using the appropriate conditional distribution of offspring genotypes that adjusts for admixture.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Advances in exome sequencing and the development of exome genotyping arrays are enabling explorations of association between rare coding variants and complex traits. To ensure power for these rare variant analyses, a variety of association tests that group variants by gene or functional unit have been proposed. Here, we extend these tests to family-based studies. We develop family-based burden tests, variable frequency threshold tests and sequence kernel association tests. Through simulations, we compare the performance of different tests. We describe situations where family-based studies provide greater power than studies of unrelated individuals to detect rare variants associated with moderate to large changes in trait values. Broadly speaking, we find that when sample sizes are limited and only a modest fraction of all trait-associated variants can be identified, family samples are more powerful. Finally, we illustrate our approach by analyzing the relationship between coding variants and levels of high-density lipoprotein (HDL) cholesterol in 11,556 individuals from the HUNT and SardiNIA studies, demonstrating association for coding variants in the APOC3, CETP, LIPC, LIPG, and LPL genes and illustrating the value of family samples, meta-analysis, and gene-level tests. Our methods are implemented in freely available C++ code. © 2015 WILEY PERIODICALS, INC.
    Genetic Epidemiology 03/2015; DOI:10.1002/gepi.21892 · 2.95 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Many disease phenotypes are outcomes of the complicated interplay between multiple genes, and multiple phenotypes are affected by a single or multiple genotypes. Therefore, joint analysis of multiple phenotypes and multiple markers has been considered as an efficient strategy for genome-wide association analysis, and in this work we propose an omnibus family-based association test for the joint analysis of multiple genotypes and multiple phenotypes. Results The proposed test can be applied for both quantitative and dichotomous phenotypes, and it is robust under the presence of population substructure, as long as large-scale genomic data is available. Using simulated data, we showed that our method is statistically more efficient than the existing methods, and the practical relevance is illustrated by application of the approach to obesity-related phenotypes. Conclusions The proposed method may be more statistically efficient than the existing methods. The application was developed in C++ and is available at the following URL:
    BMC Bioinformatics 12/2015; 16(1). DOI:10.1186/s12859-015-0484-5 · 2.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The X chromosome is generally understudied in association studies, in part because the analyst has had limited methodological options. For nuclear-family-based association studies, most current methods extend the transmission disequilibrium test (TDT) to the X chromosome. We present a new method to study association in case-parent triads: the parent-informed likelihood ratio test for the X chromosome (PIX-LRT). Our method enables estimation of relative risks and takes advantage of parental genotype information and the sex of the affected offspring to increase statistical power to detect an effect. Under a parental exchangeability assumption for the X, if case-parent triads are complete, the parents of affected offspring provide an independent replication sample for estimates based on transmission distortion to their affected offspring. For each offspring sex we combine the parent-level and the offspring-level information to form a likelihood ratio test statistic; we then combine the two to form a combined test statistic. Our method can estimate relative risks under different modes of inheritance or a more general co-dominant model. In triads with missing parental genotypes, the method accounts for missingness with the Expectation-Maximization algorithm. We calculate non-centrality parameters to assess the power gain and robustness of our method compared to alternative methods. We apply PIX-LRT to publically available data from an international consortium of genotyped families affected by the birth defect oral cleft and find a strong, internally-replicated signal for a SNP marker related to cleft lip with or without cleft palate.
    Frontiers in Genetics 02/2015; 6:15. DOI:10.3389/fgene.2015.00015