Article

In vivo and in vitro induction of human cytochrome P4503A4 by dexamethasone. Clin Pharmacol Ther

University of North Carolina, Chapel Hill 27599-7360, USA.
Clinical Pharmacology &#38 Therapeutics (Impact Factor: 7.39). 11/2000; 68(4):356-66. DOI: 10.1067/mcp.2000.110215
Source: PubMed

ABSTRACT The aims of these experiments were to determine the effect of a therapeutic regimen of dexamethasone on cytochrome P4503A4 (CYP3A4) activity in healthy volunteers; and the concentration-effect relationship between dexamethasone and CYP3A4 activity in primary human hepatocyte cultures.
The effect of dexamethasone (8 mg administered by mouth two times a day for 5 days) on CYP3A4 activity in 12 healthy volunteers was assessed with the erythromycin breath test and urinary ratio of dextromethorphan to 3-methoxymorphinan. Concentration-effect of dexamethasone on CYP3A4-dependent testosterone 6-beta-hydroxylation was determined in human hepatocytes treated with 2 to 250 micromol/L dexamethasone.
The percent of erythromycin metabolized per hour increased from 2.20% +/- 0.60% (mean +/- SD) at baseline to 2.67% +/- 0.55% on day 5 of dexamethasone (mean increase in hepatic CYP3A4 activity 25.7% +/- 24.6%; P = .004). The mean urinary ratio of dextromethorphan to 3-methoxymorphinan was 28 (4.8 to 109) and 7 (1 to 23) at baseline and on day 5 of dexamethasone (mean decrease = 49%; P = .06). Substantial intersubject variability was observed in the extent of CYP3A4 induction. The extent of CYP3A4 induction was inversely correlated with baseline erythromycin breath test (r2 = 0.58). In hepatocytes, dexamethasone 2 to 250 micromol/L resulted in an average 1.7-fold to 6.9-fold increase in CYP3A4 activity, respectively. The extent of CYP3A4 induction with dexamethasone in hepatocyte preparations was inversely correlated with baseline activity (r2 = 0.59).
These data demonstrate that dexamethasone at doses used clinically increased CYP3A4 activity with extensive intersubject variability and that the extent of CYP3A4 induction was, in part, predicted by the baseline activity of CYP3A4 in both healthy volunteers and human hepatocyte cultures.

0 Followers
 · 
102 Views
  • Source
    • "observation made by McCune et al. (2000) "
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract 1. Regulation of hepatic metabolism or transport may lead to increase in drug clearance and compromise efficacy or safety. In this study, cryopreserved human hepatocytes were used to assess the effect of 309 compounds on the activity and mRNA expression (using qPCR techniques) of CYP1A2, CYP2B6 and CYP3A4, as well as mRNA expression of six hepatic transport proteins: OATP1B1 (SCLO1B1), OCT1 (SLC22A1), MDR1 (ABCB1), MRP2 (ABCC2), MRP3 (ABCC3) and BCRP (ABCG2). 2. The results showed that 6% of compounds induced CYP1A2 activity (1.5-fold increase); 30% induced CYP2B6 while 23% induced CYP3A4. qPCR data identified 16, 33 or 32% inducers of CYP1A2, CYP2B6 or CYP3A4, respectively. MRP2 was induced by 27 compounds followed by MDR1 (16) > BCRP (9) > OCT1 (8) > OATP1B1 (5) > MRP3 (2). 3. CYP3A4 appeared to be down-regulated (≥2-fold decrease in mRNA expression) by 53 compounds, 10 for CYP2B6, 6 for OCT1, 4 for BCRP, 2 for CYP1A2 and OATP1B1 and 1 for MDR1 and MRP2. 4. Structure-activity relationship analysis showed that CYP2B6 and CYP3A4 inducers are bulky lipophilic molecules with a higher number of heavy atoms and a lower number of hydrogen bond donors. Finally, a strategy for testing CYP inducers in drug discovery is proposed.
    Xenobiotica 09/2014; 45(2):1-11. DOI:10.3109/00498254.2014.955831 · 2.10 Impact Factor
  • Source
    • "Treatment of HepaRG cells with dexamethasone for 72 hours induced CYP3A4 activity by 7-fold compared with the control, as measured by midazolam 19-hydroxylation (Fig. 3A). It should be noted that the concentrations of dexamethasone to elicit this effect are well above the therapeutic levels, which are in the low nanomolar to submicromolar range (McCune et al., 2000). As proposed by Pascussi et al., (2001), these low concentrations activate the glucocorticoid receptor and increase pregnane X receptor (PXR) expression leading to transactivation of CYP3A4 gene expression, whereas supramicromolar concentrations cause direct activation of PXR. "
    Drug Metabolism and Disposition 01/2014; 42(1):162. · 3.33 Impact Factor
  • Source
    • "Treatment of HepaRG cells with dexamethasone for 72 hours induced CYP3A4 activity by 7-fold compared with the control, as measured by midazolam 19-hydroxylation (Fig. 3A). It should be noted that the concentrations of dexamethasone to elicit this effect are well above the therapeutic levels, which are in the low nanomolar to submicromolar range (McCune et al., 2000). As proposed by Pascussi et al., (2001), these low concentrations activate the glucocorticoid receptor and increase pregnane X receptor (PXR) expression leading to transactivation of CYP3A4 gene expression, whereas supramicromolar concentrations cause direct activation of PXR. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Idiosyncratic hepatotoxicity has been associated with the oral tyrosine kinase inhibitor lapatinib, which is used in metastatic breast cancer therapy. Lapatinib is extensively metabolized by cytochrome P450 3A4/5 to yield an O-debenzylated metabolite, which can undergo further oxidation to a reactive quinone imine. A recent clinical study reported that concomitant use of lapatinib with dexamethasone increased the incidence of hepatotoxicity in metastatic breast cancer patients treated with lapatinib, and so we hypothesized that induction of CYP3A enhances the bioactivation of lapatinib to reactive intermediates that contribute to hepatotoxicity. Therefore, we examined the effect of CYP3A4 induction on the cytotoxicity and metabolism of lapatinib in the HepaRG human hepatic cell line. Differentiated HepaRG cells were pre-treated with dexamethasone (100 μM) or the prototypical CYP3A4 inducer rifampicin (4 μM) for 72 h, followed by incubation with lapatinib (0-100 μM) for 24 h. Cell viability was monitored using WST-1 assays, and metabolites were quantified by LC/MS/MS. Induction of CYP3A4 by dexamethasone or rifampicin enhanced lapatinib-induced cytotoxicity, compared to treatment with lapatinib alone. A direct comparison of the cytotoxicity of lapatinib vs. O-debenzylated lapatinib demonstrated that the O-debenzylated metabolite was significantly more cytotoxic than lapatinib itself. Further, pre-treatment with 25 μM L-buthionine sulfoximine to deplete intracellular glutathione markedly enhanced lapatinib cytotoxicity. Cytotoxicity was correlated with increased formation of O-debenzylated lapatinib and cysteine adducts of the putative quinone imine intermediate. Collectively, these data suggest that CYP3A4 induction potentiates lapatinib-induced hepatotoxicity via increased reactive metabolite formation.
    Drug metabolism and disposition: the biological fate of chemicals 11/2013; 42(1). DOI:10.1124/dmd.113.054817 · 3.33 Impact Factor
Show more